Isoperimetric and geometric inequalities in quantitative form: Stein's method approach
Inégalités isopérimétriques et géométriques sous forme quantitative : l'approche par la méthode de Stein
Résumé
We adapt Stein's method to isoperimetric and geometric inequalities. The main challenge is the treatment of boundary terms. We address this by using an elliptic PDE with an oblique boundary condition. We apply our geometric formulation of Stein's method to obtain stability of the Brock-Weinstock inequality, stability of the isoperimetric inequality under a constraint on Steklov's first non-zero eigenvalue, and stability for the combination of weighted and unweighted perimeters. All stability results are formulated with respect to the α-Zolotarev distance, α ∈ (0, 1], that we introduce to interpolate between the Fraenkel asymmetry and the Kantorovich distance.
Origine | Fichiers produits par l'(les) auteur(s) |
---|