Beacon, a Lightweight Deep Reinforcement Learning Benchmark Library for Flow Control - Archive ouverte HAL
Article Dans Une Revue Applied Sciences Année : 2024

Beacon, a Lightweight Deep Reinforcement Learning Benchmark Library for Flow Control

Résumé

Recently, the increasing use of deep reinforcement learning for flow control problems has led to a new area of research focused on the coupling and adaptation of the existing algorithms to the control of numerical fluid dynamics environments. Although still in its infancy, the field has seen multiple successes in a short time span, and its fast development pace is certainly partly imparted by the open-source effort that drives the expansion of the community. Yet this emerging domain is still missing a common ground to (i) ensure the reproducibility of the results and (ii) offer a proper ad hoc benchmarking basis. To this end, we propose beacon, an open-source benchmark library composed of seven lightweight one-dimensional and two-dimensional flow control problems with various characteristics, action and observation space characteristics, and CPU requirements. In this contribution, the seven considered problems are described, and reference control solutions are provided. The sources for the following work are publicly available.
Fichier principal
Vignette du fichier
applsci-14-03561-v4.pdf (5.91 Mo) Télécharger le fichier
main.pdf (3.61 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04750781 , version 1 (24-10-2024)

Licence

Identifiants

Citer

Jonathan Viquerat, Philippe Meliga, Pablo Jeken-Rico, Elie Hachem. Beacon, a Lightweight Deep Reinforcement Learning Benchmark Library for Flow Control. Applied Sciences, 2024, 14 (9), pp.3561. ⟨10.3390/app14093561⟩. ⟨hal-04750781⟩
14 Consultations
6 Téléchargements

Altmetric

Partager

More