UnScientify: Detecting Scientific Uncertainty in Scholarly Full Text - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

UnScientify: Detecting Scientific Uncertainty in Scholarly Full Text

Résumé

This demo paper presents UnScientify (https://bit.ly/unscientify-demo), an interactive system designed to detect scientific uncertainty in scholarly full text. The system utilizes a weakly supervised technique that employs a fine-grained annotation scheme to identify verbally formulated uncertainty at the sentence level in scientific texts. The pipeline for the system includes a combination of pattern matching, complex sentence checking, and authorial reference checking. Our approach automates labeling and annotation tasks for scientific uncertainty identification, taking into account different types of scientific uncertainty, that can serve various applications such as information retrieval, text mining, and scholarly document processing. Additionally, UnScientify provides interpretable results, aiding in the comprehension of identified instances of scientific uncertainty in text.
Fichier principal
Vignette du fichier
paper9.pdf (1.47 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04746584 , version 1 (21-10-2024)

Licence

Identifiants

  • HAL Id : hal-04746584 , version 1

Citer

Panggih Kusuma Ningrum, Philipp Mayr, Iana Atanassova. UnScientify: Detecting Scientific Uncertainty in Scholarly Full Text. Proceedings of Joint Workshop of the 4th Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2023) and the 3rd AI + Informetrics (AII2023) co-located with the JCDL 2023, ACM/IEEE Joint Conference on Digital Libraries 2023, Jun 2023, Sante Fe, United States. pp.52-58. ⟨hal-04746584⟩
2 Consultations
2 Téléchargements

Partager

More