Unsupervised Learning for Gain-Phase Impairment Calibration in ISAC Systems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Unsupervised Learning for Gain-Phase Impairment Calibration in ISAC Systems

Résumé

Gain-phase impairments (GPIs) affect both communication and sensing in 6G integrated sensing and communication (ISAC). We study the effect of GPIs in a single-input, multiple-output orthogonal frequency-division multiplexing ISAC system and develop a model-based unsupervised learning approach to simultaneously (i) estimate the gain-phase errors and (ii) localize sensing targets. The proposed method is based on the optimal maximum a-posteriori ratio test for a single target. Results show that the proposed approach can effectively estimate the gain-phase errors and yield similar position estimation performance as the case when the impairments are fully known.
Fichier principal
Vignette du fichier
2410.04176v1.pdf (1.9 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04746414 , version 1 (21-10-2024)

Identifiants

Citer

José Miguel Mateos-Ramos, Christian Häger, Musa Furkan Keskin, Luc Le Magoarou, Henk Wymeersch. Unsupervised Learning for Gain-Phase Impairment Calibration in ISAC Systems. 2024. ⟨hal-04746414⟩
3 Consultations
5 Téléchargements

Altmetric

Partager

More