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Abstract—Gain-phase impairments (GPIs) affect both
communication and sensing in 6G integrated sensing and
communication (ISAC). We study the effect of GPIs in a
single-input, multiple-output orthogonal frequency-division
multiplexing ISAC system and develop a model-based unsupervised
learning approach to simultaneously (i) estimate the gain-phase
errors and (ii) localize sensing targets. The proposed method is
based on the optimal maximum a-posteriori ratio test for a single
target. Results show that the proposed approach can effectively
estimate the gain-phase errors and yield similar position estimation
performance as the case when the impairments are fully known.

Index Terms—GPIs, Orthogonal frequency-division multiplexing,
Model-based learning, Unsupervised learning.

I. INTRODUCTION

Integrated sensing and communication (ISAC) is considered
a key enabler of the 6th generation wireless systems (6G) [1],
combining sensing and communication functions in a single
device, thereby providing sensing capabilities to communication
systems, while also improving wireless channel usage efficiency
and system performance [2]. Signal processing in ISAC has been
largely driven by model-based algorithms, which offer perfor-
mance guarantees, explainability, and predictable computational
complexity [3]–[7]. However, the higher carrier frequencies
expected in 6G and the integration of sensing in communication
networks increase the likelihood of hardware impairments such
as antenna distortions, phase noise, and sampling jitter [8], [9].
These hardware impairments cause a model mismatch in the
model-based algorithms and thus degrade their performance.

Deep learning (DL) has been successfully applied to mitigate
hardware impairments in ISAC [10]–[13], but it suffers from lack
of interpretability. In contrast, model-based machine learning
(MB-ML) provides interpretable solutions, by parameterizing
standard model-based algorithms, enhancing their adaptability to
mismatched models while offering performance guarantees [14].
MB-ML has been applied in communications [15]–[18], sensing
[19]–[21], and ISAC scenarios [22]. Hardware impairment
mitigation solutions (e.g., [20]–[22]) rely on supervised learning
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Fig. 1: A monostatic SIMO radar sends OFDM signals to perform single-target
detection and position estimation. The OFDM signals can be received by a
user equipment to estimate the transmitted messages and reflected back from
a target in the environment. The receive antenna array is affected by GPIs.

(SL), which involves the difficult or time-consuming process
of acquiring the ground-truth position of the objects in the
environment. Unsupervised learning (UL) avoids labeled data
and has been applied for ISAC inter-antenna spacing impairment
mitigation in [23], though still requiring a small labeled dataset
to fully compensate for the impairments.

In this paper, we develop an UL approach to jointly compen-
sate for antenna gain-phase impairments (GPIs) and estimate
target locations, under the MB-ML framework. As a proof-of-
concept, we focus on a simple monostatic single-input multiple-
output (SIMO) radar performing single-target detection and
position estimation based on orthogonal frequency-division
multiplexing (OFDM) signals (see Fig. 1). GPI mitigation is an
important problem, with model-based [24]–[26], DL [27], [28],
and MB-ML solutions [17], [18]. However, [24], [25] required at
least a transmitter at a known angle to calibrate the antenna array
and [26] assumed a known model of the channel state information
(CSI), which does not apply to our case as the CSI contains the
target position to be estimated. In [27], only angle estimation was
performed and [28] required a transmitter at a known position
for calibration. Moreover, [27], [28] require labeled data to train.
Finally, although [17], [18] proposed MB-ML UL approaches
to compensate for GPI, they considered a pure communication
system and CSI estimation without localization of the user.

II. SYSTEM MODEL

We consider a monostatic SIMO-OFDM ISAC transceiver
equipped with a single-antenna transmit (TX) and a receive
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(RX) uniform linear array (ULA) of N elements. The element
spacing of the RX ULA is dR. The OFDM signal has a
symbol duration of Tsym = Tcp + T , where Tcp is the cyclic
prefix (CP) and and T is the elementary symbol duration. The
complex baseband OFDM transmit signal with S subcarriers
and a subcarrier spacing ∆f = 1/T is [29], [30]

s(t) =
1√
S

S−1∑
s=0

xse
ȷ2πs∆f trect

(
t

Tsym

)
, (1)

where xs is the complex transmitted symbol in the s-th
subcarrier. Considering the presence of a stationary point-target
in the far-field, the noise-free received baseband signal at the
n-th RX element is [31]

zn(t) =γ[a(θ)]ns(t− τ) (2)
where γ is the complex channel gain, τ is the total round-trip
delay of the target, θ is the angle-of-arrival (AOA), and a(θ)
is the array steering vector with

[a(θ)]n = e−ȷ2πndR sin(θ)/λ, n = 0, . . . , N − 1 (3)
for carrier wavelength λ. Following the standard OFDM
assumption, the CP is taken to be larger than the round-trip
delay of the furthermost target, i.e., Tcp ≥ τ . Sampling zn(t) at
t = Tcp + lT/S for l = 0, . . . , S − 1 (i.e., after CP removal),
we obtain the discrete-time signal

zn[l] =
γ√
S
[a(θ)]n

S−1∑
s=0

xse
ȷ2πs l

S e−ȷ2πs∆fτ , (4)

where the known phase shift exp(ȷ2πs∆fTcp) is absorbed into
xs. Taking the S-point DFT of zn[l] yields the frequency-domain
baseband signal as

Zn,s = F
{
{zn[l]}S−1

l=0

}
= γ[a(θ)]nxs[b(τ)]s, (5)

with[b(τ)]s = exp(−ȷ2πs∆fτ). Aggregating over antenna
elements and subcarriers, the signal in (4) can be expressed as

Z =γa(θ)(b(τ)⊙ x)⊤ ∈ CN×S , (6)
where x = [x0 · · ·xS−1]

⊤ is the transmit symbol vector and
⊙ denotes the Hadamard product.

Observation without GPI: Adding noise at the receiver
side and considering the random presence of a target in the
environment yields the final model1

Y =tγa(θ)(b(τ)⊙ x)⊤ +W , (7)
where t ∈ {0, 1} denotes the absence or presence of a
target and W represents additive white Gaussian noise
(AWGN) following vec(W ) ∼ CN (0, N0I), with vec(·) the
vectorization operation, 0 the all-zeros vector and I the identity
matrix. The goal of the sensing receiver is to detect the presence
of the target and estimate its position based on Y .

Observation with GPI: When the ULA elements are affected
by GPIs, the actual steering vector of the ULA is a(θ;κ) =
κ⊙a(θ), where κ ∈ CN is a vector that contains the GPIs of all
antenna elements. We consider that ∥κ∥2 = N so that under im-
pairments the transmitter energy is preserved, i.e., ∥a(θ;κ)∥2 =
∥a(θ)∥2 = N . The model in (7) under GPIs becomes

Y =tγ(a(θ;κ)(b(τ)⊙ x)⊤) +W . (8)
The goal of the receiver is now to operate under unknown κ.

1The communication receiver is not affected by GPI under the considered
SIMO model. For this reason and due to space limitations, the communication
performance is not evaluated in this paper.

III. PROPOSED METHOD

In the following, we detail the considered baseline to perform
target detection and position estimation as well as the proposed
unsupervised MB-ML approach to compensate for the GPIs.

A. Baseline

We assume that the baseline operates under a fixed κ, which
may not coincide with the true GPIs. In order to detect the
target presence and estimate its position, we resort to the
maximum a-posteriori ratio test (MAPRT) detector [32], which
generalizes the generalized likelihood ratio test detector [33] to
the case with random parameters and thus can take into account
prior information on γ, θ and τ . We assume that the complex
channel gain follows a normal distribution as γ ∼ CN (0, σ2

γ)
and the target angle and range are confined to an a priori known
region, i.e., θ ∼ U [θmin, θmax], τ ∼ U [τmin, τmax]. Moreover,
we assume that p(t = 0) = p(t = 1) = 1/2. For a fixed κ, the
MAPRT then yields the following optimal test:

max
θ∈O
τ∈T

{
|aH(θ;κ)Y (b(τ)⊙ x)∗|2

}
≷ η, (9)

where O = [θmin, θmax], T = [τmin, τmax], (·)H denotes the
conjugate transpose operation, (·)∗ denotes the conjugate
operation, |·| denotes the absolute value, and η is a threshold that
controls the probabilities of detection and false alarm. Details
about the derivation of the MAPRT can be found in Appendix A.
The angle and delay of the target are obtained as follows:

(θ̂, τ̂) = argmax
θ∈O
τ∈T

{
|aH(θ;κ)Y (b(τ)⊙ x)∗|2

}
. (10)

When the assumed κ matches the actual GPIs, the baseline
in (9), (10) is optimal and it represents a lower bound on the
performance, as it will be shown in Sec. IV.

B. Proposed UL MB-ML Method

We base our approach on the baseline of Sec. III-A. In
particular, we compute the angle-delay map as

M(κ̂) = |Φθ(κ̂)
HY (Φτ ⊙ x1⊤)∗|2, (11)

where κ̂ is the estimate of the GPIs, 1 is the all-ones vector, and
Φθ(κ̂) = [a(θ1; κ̂) a(θ2; κ̂) · · · a(θNθ

; κ̂)] (12)
Φτ = [b(τ1) b(τ2) · · · b(τNτ

)]. (13)
We evaluate the angle-delay map on a uniformly sampled
2D grid, with Nθ and Nτ the number of angle and delay
points, respectively. From the angle-delay map, we propose two
different unsupervised loss functions to learn the GPIs.

1) Maximize the maximum value of the angle-delay map:
J (κ̂) = Et,γ,θ,τ,x,W

[
−max

i,j
[M(κ̂)]i,j

]
, (14)

where the expectation is taken with respect to random realizations
of t, γ, θ, τ,x, and W in (8). Unknown GPIs reduce the
magnitude of the angle-delay map, since computation of the
angle-delay map involves |aH(θ; κ̂)a(θ;κ)|2, which is only
maximized if κ̂ = κ. Thus, we expect that by minimizing (14),
our proposed algorithm converges to the true impairments κ.
Details about how the impairments affect the angle-delay map
will be shown in Sec. IV.



Algorithm 1 Unsupervised MB-ML of the gain-phase errors.

1: Input: Initial GPIs κ(0).
2: Output: Learned GPIs κ(I).
3: for i = 1, 2, . . . , I

4: Draw a batch of realizations of: t, γ, θ, τ,x, and W .
5: Compute Y according to (8).
6: Construct Φθ(κ

(i)) and Φτ according to (12) and (13).
7: Compute the angle-delay map following (11).
8: Compute J (κ(i)) according to (14) or (15).
9: Update κ(i+1) through gradient descent.

10: Normalize κ(i+1) so that ∥κ(i+1)∥2 = N .

2) Minimize the error of the received observation signal:
J (κ̂) = Et,γ,θ,τ,x,W

[
∥Y − Ỹ (κ̂)∥F

]
, (15)

where ∥·∥F denotes the Frobenius norm and
Ỹ (κ̂) = γ̂a(θ̂; κ̂)(b(τ̂)⊙ x)⊤ (16)

is the reconstructed observation from the channel gain, angle,
and target delay estimations. The expression for γ̂ is derived in
Appendix A.2 The motivation behind (15) is that the observation
Y is affected by the true GPIs κ, while we reconstruct the
observation Ỹ in (16) using the estimated impairments κ̂. Our
hypothesis is that by minimizing the difference between the
received observation and the reconstructed signal, the learned
impairments converge to the true impairments. Although the
computation of θ̂ and τ̂ in (10) involves a nondifferentiable
operation, it is possible to compute the gradient of the loss
in (15) with respect to κ̂, which was already observed in an
equivalent approach in [17].

In Algorithm 1, we summarize the proposed unsupervised MB-
ML algorithm to learn the GPIs. The distributions of the random
variables are highlighted in Table I. We initialize the algorithm
with the ideal gain-phase coefficients, i.e., κ(0) = 1. Once we
have learned the gain-phase errors according to Algorithm 1,
we compute the same operations as the baseline in (9), (10)
for inference, where the steering vector aH(θ;κ) is replaced by
the steering vector with the learned impairments aH(θ;κ(I)).

IV. RESULTS

In this section, we detail the considered simulation parameters
and present the sensing results3 to assess the effectiveness of
the proposed learning approach.

A. Simulation Parameters

In Table I the simulation parameters are outlined, where
we consider that the communication symbols [x]s are
randomly drawn from a quadrature phase-shift keying (QPSK)
constellation and ∡(·) denotes the phase of a complex value. The
SNR is SNR = E[∥γ(a(θ)(b(τ)⊙x)⊤)∥2F ]/N0 = σ2

γNS/N0.
The magnitude and phase of the GPIs are drawn from the
distributions detailed in [36]. To evaluate the objective function
to maximize in (9) and (10), we perform a uniformly 2D grid

2The estimation of γ̂ assumes knowledge of N0/σ2
γ , which is related to

the signal-to-noise ratio (SNR). In this work we assume perfect knowledge
of N0/σ2

γ , but we refer the reader to [34], [35] for SNR estimation methods.
3The code to reproduce all simulation results will be available in

github.com/josemateosramos/UL gain phase ISAC after the peer-review process.

TABLE I: Simulation parameters

Parameter Expression Value
N - 64 antenna elements
fc - 60 GHz
dR λ/2 5 mm
S - 256 subcarriers
∆f - 240 kHz
Tcp 0.07/∆f -
t U{0, 1} -
γ CN (0, σ2

γ) -
θ U [θmin, θmax] -
θmin θmean −∆θ/2 -
θmax θmean +∆θ/2 -
θmean U [−60◦, 60◦] -
∆θ U [10◦, 20◦] -
τ U [τmin, τmax] -
τmin 2Rmin/c Rmin = 10 m
τmax 2Rmax/c Rmax = 43.75 m
x E[∥x∥2] = S -
vec(W ) CN (0, N0I) -
SNR σ2

γNS/N0 15 dB
|[κ]n| U [0.95, 1.05] -
∡([κ]n) U [−π/2, π/2] -
Nθ, Nτ - 100
Learning rate - 10−2

Batch size - 1024

Training iterations - 104

Fig. 2: Angle-delay map under full knowledge of the impairments (left) and
assuming no impairments (right). The images are normalized with respect to
the maximum of the angle-delay map under full knowledge of the impairments.

search over angles and delays, similarly to (11). During training,
we leverage the Adam optimizer [37].

B. Impact of GPIs

To understand how ignoring the GPIs affects the sensing
performance, we plot in Fig. 2 the angle-delay maps under
full knowledge of the GPIs, i.e., κ̂ = κ (left) and assuming
no impairments, i.e., κ̂ = 1 (right). The channel model in (8)
includes an impairment realization κ ̸= 1. It is observed that
disregarding GPIs changes the position of the maximum of the
angle-delay map, which affects the test in (10). Furthermore,
the angle-delay maps in Fig. 2 are normalized with respect to
the maximum of the angle-delay map under full knowledge of
GPIs (left), which implies that ignoring the GPIs also decreases
the maximum magnitude of the angle-delay map compared to
full knowledge of GPIs (as commented in Sec. III-B).
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Fig. 3: Sensing results as a function of the false alarm probability.

C. Sensing Results

In Fig. 3, we show the testing sensing results, where we
compare: (i) the baseline of Sec. III-A when κ matches the true
impairments (in blue), (ii) the baseline with κ = 1 (in black),
and (iii) the proposed method of Sec. III-B with the learned
impairments κ = κ(I), using the loss in (14) (in green) and the
loss in (15) (in red). The results in Fig 3 are averaged over 100
realizations of the GPIs. The results in Fig. 3 indicate that the
proposed unsupervised learning approach can converge to a GPI
vector similar to the true impairments of the ULA and obtain
similar performance as the case where the impairments are
fully known. This confirms the hypothesis of Sec. III-B about
the effectiveness of the proposed loss functions. Moreover, the
performance of the algorithm using the losses (14) and (15)
is very similar, which can be explained following the derivation
of Appendix A. The loss in (15) resembles the objective to
minimize in (20) and the loss in (14) is similar to (25). Both
(20) and (25) are derived from the same MAPRT objective
in (18). The results in Fig. 3 indicate that minimizing (14)
or (15) is equivalent. The advantage of (14) is that is does
not require knowledge of the SNR, while (15) can be more
easily generalized to multiple targets and embedded in iterative
algorithms like the orthogonal matching pursuit algorithm [38].

V. CONCLUSIONS

In this work, we have proposed a model-based unsupervised
learning approach to account for GPIs in the RX ULA of an
ISAC system. We have based our proposed approach on the
optimal MAPRT, developing a differentiable approach that
allows for backpropagation, and proposing two unsupervised loss
functions that require no labeled data. Our results have shown that
the proposed approach can effectively compensate for the effect
of gain-phase errors in the RX ULA, yielding target detection
and position estimation performances similar to the case where
the impairments are fully known. Natural extensions include

considering multiple targets and the GPI under a MIMO system.

APPENDIX A
DERIVATION OF MAPRT

This appendix details the derivation of the MAPRT in
Sec. III-A for single-target detection and position estimation.
Since the target in the far-field is randomly present, we can
formulate the target detection problem as a binary hypothesis
testing problem:

H0 : Y = N

H1 : Y = γM(θ, τ) +N ,
(17)

where M(θ, τ) = a(θ;κ)(b(τ)⊙ x)⊤.
Note that the transmitted communication symbols x are

known for the sensing receiver in the considered monostatic
setup. Considering γ a random unknown, the MAPRT is

L(Y ) =
maxγ,θ,τ p(γ, θ, τ,H1|Y )

p(H0|Y )

H1

≷
H0

η. (18)

Applying the Bayes’ theorem to (18) yields

L(Y ) =
maxγ,θ,τ p(Y |γ, θ, τ,H1)p(γ)p(θ)p(τ)p(H1)

p(Y |H0)p(H0)

H1

≷
H0

η̃.

(19)
Assuming p(H0) = p(H1) = 1/2, γ ∼ CN (0, σ2

γ), θ ∼
U([θmin, θmax]), τ ∼ U([τmin, τmax]) and taking the logarithm
in (19), we obtain4

Llog(Y ) =
∥Y ∥2F
N0

−min
γ

θ∈O
τ∈T

{
∥Y − γM∥2F

N0
+

|γ|2

σ2
γ

}
H1

≷
H0

η̄,

(20)
where Llog(Y ) = log(L(Y )) and η̄ = η̃ + log(πσ2

γ) +
log(θmax − θmin) + log(τmax − τmin). The optimal γ for a
given (θ, τ) in (20) is

γ̂ =
vec(M)Hvec(Y )

∥M∥2F +N0/σ2
γ

. (21)

Manipulating the expression in (20) and plugging (21) yields

Llog(Y ) = max
θ∈O
τ∈T

{
|vec(M)Hvec(Y )|2

∥M∥2F +N0/σ2
γ

}
H1

≷
H0

η̄. (22)

Given the definition of M(θ, τ), we have that
∥M∥2F = N∥x∥22 (23)

|vec(M)Hvec(Y )|2 = |aH(θ;κ)Y (b(τ)⊙ x)∗|2. (24)
Plugging (23) and (24) into (22) yields

Llog(Y ) = max
θ∈O
τ∈T

{
|aH(θ;κ)Y (b(τ)⊙ x)∗|2

} H1

≷
H0

η, (25)

where η = η̄(N∥x∥22 + N0/σ
2
γ). Once we have obtained the

estimated θ̂, τ̂ , we can plug the estimations in (21).
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