Bumblebees locate goals in 3D with absolute height estimation from ventral optic flow
Résumé
Introduction When foraging, flying animals like bees are often required to change their flight altitude from close to the ground to above the height of the vegetation to reach their nest or a food source. While the mechanisms of navigating towards a goal in two dimensions are well understood, the explicit use of height as a source for navigation in three dimensions remains mostly unknown. Our study aims to unravel which strategies bumblebees use for height estimation and whether they rely on global or local cues. Methods We expanded a 2D goal localization paradigm, where a goal location is indicated by cylindrical landmarks, to the third dimension by using spherical landmarks to indicate a feeder’s position in 3D and examined the search pattern of bumblebees. Additionally, we assessed the ability of bees to estimate the height of a feeder based on local landmarks and global references such as the ground floor. Results The search distribution for a feeder’s position in 3D was less spatially concentrated compared to in 2D. Assessing the bees’ height estimation ability, we found that bees could estimate a feeder’s height using the ground floor as a reference. However, the feeder needed to be sufficiently close to the ground floor for the bees to choose correctly. Discussion When bumblebees are faced with the challenge of foraging in a 3D environment where the height of a food source and landmark cues are important, they demonstrate the ability to learn and return to a specific flower height. This suggests they rely on ventral optic flow for goal height estimation in bumblebees.
Origine | Fichiers produits par l'(les) auteur(s) |
---|