SKY: Self-supervised Learning of Major and Minor Keys from Audio - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

SKY: Self-supervised Learning of Major and Minor Keys from Audio

Yuexuan Kong
  • Fonction : Auteur
  • PersonId : 1408959
Gabriel Meseguer-Brocal
  • Fonction : Auteur
  • PersonId : 1042752
Romain Hennequin
  • Fonction : Auteur
  • PersonId : 1016644

Résumé

STONE, the current method in self-supervised learning for tonality estimation in music signals, cannot distinguish relative keys, such as C major versus A minor. In this article, we extend the neural network architecture and learning objective of STONE to perform self-supervised learning of major and minor keys (SKY). Our main contribution is an auxiliary pretext task to STONE, formulated using transposition-invariant chroma features as a source of pseudo-labels. SKY matches the supervised state of the art in tonality estimation on FMAKv2 and GTZAN datasets while requiring no human annotation and having the same parameter budget as STONE. We build upon this result and expand the training set of SKY to a million songs, thus showing the potential of large-scale self-supervised learning in music information retrieval.
Fichier principal
Vignette du fichier
kong2024sky-under-review.pdf (1.54 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04733487 , version 1 (12-10-2024)

Identifiants

  • HAL Id : hal-04733487 , version 1

Citer

Yuexuan Kong, Gabriel Meseguer-Brocal, Vincent Lostanlen, Mathieu Lagrange, Romain Hennequin. SKY: Self-supervised Learning of Major and Minor Keys from Audio. 2024. ⟨hal-04733487⟩
72 Consultations
59 Téléchargements

Partager

More