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Abstract—STONE, the current method in self-supervised learning for
tonality estimation in music signals, cannot distinguish relative keys, such
as C major versus A minor. In this article, we extend the neural network
architecture and learning objective of STONE to perform self-supervised
learning of major and minor keys (SKY). Our main contribution is an
auxiliary pretext task to STONE, formulated using transposition-invariant
chroma features as a source of pseudo-labels. SKY matches the supervised
state of the art in tonality estimation on FMAKv2 and GTZAN datasets
while requiring no human annotation and having the same parameter
budget as STONE. We build upon this result and expand the training
set of SKY to a million songs, thus showing the potential of large-scale
self-supervised learning in music information retrieval.

Index Terms—music key estimation, self-supervised learning, music
information retrieval

I. INTRODUCTION

Variations in tonality tend to elicit sensations of surprise among
music listeners [1]. Characterizing these variations is a long-standing
topic in music information retrieval (MIR), with MIREX serving as a
standard evaluation framework in the case of Western tonal harmony
[2]. Yet, despite the interest in deep convolutional networks (convnets)
in MIR [3], they depend on a collection of expert annotations for
supervised learning. This is at odds with so-called implicit learning
in humans: explicit understanding of erudite concepts of music theory
is not necessary to perceive harmonic contrast. Hence, we question
the need for supervision in machine learning for tonality estimation.

An alternative paradigm, known as self-supervised learning (SSL),
has found promising applications into MIR [4]. The gist of SSL is to
formulate a pretext task; i.e., one in which the correct answer may
be inexpensively obtained from audio data. While some SSL systems
have general-purpose pretext tasks and require supervised fine-tuning
[5]–[8], others are tailored for specific downstream tasks: e.g., the
estimation of pitch [9], [10], tempo [11], [12], beat [13], drumming
patterns [14], and structure [15].

Very recently, a pretext task has been proposed for tonality estima-
tion, as part of two SSL models:STONE, a key signature estimator, and
its variant 24-STONE, the only existing self supervised key signature
and mode estimator [16]. However, STONE is incomplete in the sense
that it is sensitive to modulations within a given key signature: for
example, STONE may distinguish C major from A major or from C
minor, but not from A minor. On the other hand, 24-STONE, as a first
proposition toward self-supervised key signature and mode estimator,
underperforms by 2% to a supervised baseline, and by 15% when
compared to models incorporating supervision. The issue of coming
up with an SSL technique which could classify key signatures as well
as major and minor modes that can achieve comparable performance
as supervised models remains as an open problem.

In this article, we present SKY, the first SSL model which learns
to represent both the distinction between key signatures and modes.
Given that major and minor modes are the two most representative

modes in western music, in this paper, we limit mode classification
only to major and minor modes, which is often the case in literature
[17]. The main idea behind SKY is to form pseudo-labels for the mode
classification by comparing the chroma features which correspond to
the root notes of the relative major and minor scales. To identify these
root notes, we rely on self-supervised knowledge about key signatures,
as obtained via a STONE-like pretext task. The originality of SKY
is to re-inject this knowledge into the formulation of a finer-grained
task. For simplicity and efficiency, our convnet optimizes both tasks
at once, via a structured output for 24-class classification: 12 key
signatures and two modes.

Our main finding is that SKY achieves a MIREX score [2] of 72.0%
on the FMAKv2 dataset, outperforming the self-supervised state of
the art (SOTA) of 57.9% held by 24-STONE with the same number
of parameters and training samples (60k songs). Scaling up SSL to
1M songs brings the MIREX score of SKY up to 73.2%, on par
with the supervised SOTA (73.1%) of [17]. We expand our MIREX-
compliant benchmark to three other datasets: GTZAN, GiantSteps,
and Schubert Winterreise Dataset (SWD). Although key classification
remains challenging for certain genres (e.g., blues, jazz, and hip-hop),
SKY is the first SSL method which matches or outperforms supervised
deep learning for this task with no need for supervision.

II. METHODS

Our proposed method builds on previous publication [16] whose
key components are briefly presented in II-A and II-B. From II-C
to II-F, we introduce novel contributions of SKY which replace the
necessity of supervision in 24-STONE by self-supervision.

A. Structured prediction with ChromaNet

For each song in the training set, we extract two disjoint time
segments, denoted by A and B. We compute their constant-Q
transforms (CQT) with Q = 12 bins per octave and center frequencies
ranging between 27.5 Hz and 8.37 kHz (99 bins). We denote the
CQT of segment A by xA and idem for xB. This is non-contrastive
SSL because xA and xB are assumed to be in the same key.

To perform artificial pitch transposition, we crop CQT rows in xA

to simulate a pitch transposition by c semitones for 0 ≤ c ≤ 15:
TcxA[p, t] = xA[p−c, t] for each c ≤ p < QJ where J = 7 octaves.
Idem for TcxB. All CQTs after cropping result in QJ = 84 bins in
total. As an example, T0xA and TkxA are assumed to have a pitch
difference of k semitones.

We define a 2-D fully convnet fθ with trainable parameters θ,
operating on TcxA and TcxB with M = 2 output channels and no
pooling over the frequency dimension. Over each channel, we apply
average pooling on the time dimension and batch normalization.

The matrix of learnable activations fθ(TcxA) has QJ = 84 rows
and M = 2 columns. We sum this matrix across octaves, i.e., across
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Fig. 1. Structured prediction: Summing yθ,A,c over rows produces a pitch-
equivariant component λθ,A,c, summing yθ,A,c per columns produces a
pitch-invariant component µθ,A,c.

rows by Q semitones apart, and apply a softmax transformation over
all Q ∗M = 24 entries.

This yields a matrix yθ,A,c with Q = 12 rows and M = 2
columns whose entries are nonnegative and sum to one. We sum
the columns of yθ,A,c, yielding λθ,A,c[q] =

∑M−1
m=0 yθ,A,c[q,m] a

vector with Q nonnegative entries summing to one. Likewise over
rows: µθ,A,c[m] =

∑Q−1
q=0 yθ,A,c[q,m], a vector with M nonnegative

entries summing to one. This is a kind of structured prediction:
the learned representation yθ,A,c has a pitch-equivariant component
λθ,A,c and a pitch-invariant component µθ,A,c, as shown in Figure
1. Idem for yθ,B,c, λθ,B,c, and µθ,B,c.

B. Cross-power spectral density (CPSD)

The cross-power spectral density (CPSD) of λθ,A,c and λθ,B,c

is the product λ̂θ,A,c[ω]λ̂
∗
θ,B,c[ω], where the hat denotes a discrete

Fourier transform (DFT), the asterisk denotes a complex conjugation,
and the discrete frequency variable ω is coprime with 12. We set
ω = 7 so that the phase of the CPSD coefficient denotes a key
modulation over the circle of fifths (CoF)—see [16] for details.

Intuitively, while λθ,A,c is a one-hot encoding, λ̂θ,A,c is a complex
number of module 1 on the border of the CoF. Given an integer
k, the CPSD of λθ,A,c and λθ,A,c+k is the difference of phases
corresponding to a pitch modulation of k semitones on the CoF.

We define a CPSD-based function Dθ,c,k which is equal to zero if
and only if the vectors λθ,A,c and λθ,B,c+k contain a single nonzero
coefficient and are equal up to circular shift by k:

Dθ,c,k(xA,xB) =
1

2

∣∣∣e−2πiωk/Q − λ̂θ,A,c[ω]λ̂
∗
θ,B,c+k[ω]

∣∣∣2 . (1)

For any integer k and pair x = (xA,xB), Dθ,c,k is differentiable with
respect to ChromaNet weights θ. Hence, we define a CPSD-based
loss function1 which is parametrized by c and k:

LCPSD(θ |x, c, k) = Dθ,c,0(xA,xB)

+Dθ,c,k(xA,xA)

+Dθ,c,k(xB,xA). (2)

In equation (2), the first term encourages the model fθ to be invariant
to the permutation of xA and xB, while the second and third term
encourage it to be equivariant to the pitch interval k. As [16] points
out, all three terms are indispensable for an efficient optimization of
the model without collapsing into a uniform or constant distribution.

C. Pseudo-labeling of mode

STONE has shown that training a ChromaNet to minimize LCPSD

produces a pitch-equivariant representation which is a sparse nonneg-
ative vector in dimension Q. We elaborate on this prior work to build
a self-supervised approximate predictor of key signature, based on
the pitch-equivariant component λθ for both segments A and B:

qmax (θ |x) = arg max
0≤q<Q

(λθ,A,c[q] + λθ,B,c)[q]) . (3)

1In this paper, we use the vertical bar notation to clearly separate neural
network parameters on the left versus data and random values on the right.

Our postulate is that, if LCPSD(θ) is low and x is in a major key,
qmax (θ |x) on the CQT scale corresponds to its root pitch class.

We compute a pitch class profile (PCP) for x by averaging its CQT
across octaves, along time, and across segments A and B:

u(x)[q] =
1

2

J−1∑
j=0

τ−1∑
t=0

(
xA[Qj + q, t] + xB[Qj + q, t]

)
(4)

Without side information nor learning, u(x) would be a poor predictor
of tonality, as it erases spectrotemporal dynamics in x. However, when
the key signature is known (e.g., no Z nor \), comparing the CQT
energy of the root note of the major key (e.g., C) with that of the
relative minor key (e.g., A) can achieve an accuracy of 79.4% in
correctly determining the mode. Our main idea for this paper is to use
the key signature predictor qmax(θ) as side information to improve
pretext task design based on u(x).

We look up the entry umaj(θ |x, c) = u(Tcx)[qmax(θ |x)], where
Tcx is a shorthand for (TcxA, TcxB). Its value may be interpreted as
the acoustical energy at the root pitch class under the assumption that
the song is in a major key. Conversely, we look up umin(θ |x, c) =
u(Tcx)[(qmax(θ |x)− 3)modQ], i.e., idem under the assumption
that the song is in a minor key. Since Q = 12, the number 3 in
the definition of umin corresponds to a minor third, i.e., the interval
between roots of relative keys. We define a pseudo-label ν for SSL
of mode according to a simple logical rule:

ν(θ |x, c) =

{
[1, 0] if (umaj(θ |x, c) > umin(θ |x, c))
[0, 1] otherwise.

(5)

D. Binary cross-entropy (BCE) with pseudo-labels

Given ν(θ |x, c) and k, we define a novel loss function:

LSKY(θ |x, c, k) = BCE(ν(θ |x, c),µθ,A,c)

+ BCE(ν(θ |x, c),µθ,B,c)

+ BCE(ν(θ |x, c),µθ,A,c+k) (6)

where BCE(ν,µ) = −ν[0] logµ[0]− ν[1] logµ[1] denotes binary
cross-entropy. Intuitively, LSKY is low if and only if the structured
predictions fθ(TcxA), fθ(TcxB), and fθ(Tc+kxA) have large co-
efficients in the column corresponding to the pseudo-label ν(θ |x, c).

Crucially, the equation above is different from the definition of
LBCE in 24-STONE [16, Equation 16], which only involves pairwise
BCE’s between ChromaNet activations µθ .

While STONE is symmetric across columns, SKY breaks this
asymmetry via the pseudo-labeling function ν, making it less
susceptible to model collapse. This pseudo-labeling process replaced
the indispensable supervision in 24-STONE.

E. Loss over batch-wise average of mode predictions

SSL training with LSKY faces a “cold start” problem in the sense
that the pseudo-labeling function ν is itself parametrized by the
pitch equivariant component λθ , therefore ChromaNet weights θ.
During informal experiments, we have observed that penalizing θ
with LCPSD may not suffice to bootstrap the model from a random
initial value. Against this issue, we assume that roughly half of the
songs in each mini-batch of N songs X = (xn)

N−1
n=0 are major, the

other half being minor. We denote the corresponding batches of pitch
transposition parameters by C = (C[n])n and K = (K[n])n. We use
TCX as a shorthand for ((TC[n]Xn,A, TC[n]Xn,B))n. We compute
the batch-wise average of mode predictions as

µavg
θ (TCX) =

1

N

N−1∑
n=0

∑
L∈{A,B}

µθ(TC[n]Xn,L)[0] (7)



and derive the loss function: Lavg(θ| x,C) = (µavg
θ (TCX)− 1

2
)2.

F. Self-supervised learning of major and minor keys (SKY)

Summing all three terms yields the training loss for SKY:

L(θ| X,C,K) =

N−1∑
n=0

LCPSD(θ |Xn,C[n],K[n])

+ λSKY

N−1∑
n=0

LSKY(θ |Xn,C[n],K[n])

+ λavgLavg(θ |X,C). (8)

We set the hyperparameters λBCE and λavg so that all three terms in
the loss L are of the same order of magnitude at the initialization:
λBCE = 1.5 and λavg = 15.

III. APPLICATION

A. Training

STONE was trained on a corpus of 60k songs from the Deezer
catalog. To offer a fair comparison, we begin by training SKY on the
exact same dataset: see IV-A and Table I. Later on, we scale up SSL
training to 1M songs from Deezer: see IV-B and Table II.

We set the duration of segments A and B to 15 seconds. We
randomize c uniformly between 0 and 15 semitones, k uniformly
between -12 to 12 semitones and 0 ≤ k + c ≤ 15. We train SKY
for 50 epochs and use a batch size of 128 on the 60k-song corpus
versus 100 epochs and a batch size of 256 on the 1M-song corpus.
We use the AdamW optimizer with a learning rate of 0.001 and a
cosine learning rate schedule preceded by a linear warm-up.

B. Calibration on C major and A minor scales

The necessity of calibrating two channels separately arises because
the model sometimes reaches a local minimum where a shift of fifths
exists between the two channels (e.g., C major has the same index
as E minor, and as note C in CQT). In this local minimum, LCPSD

remains low, given that the fifths of a key are considered to be the
closest among all keys except for the correct one. ν would serve as a
slightly less accurate pseudo-label than when the model is in its global
minimum, however remains a relevant pseudo-label, as demonstrated
by empirical results.

We create two synthetic samples, one in C major and another in A
minor to calibrate two channels separately. This calibration step is
similar to STONE [16] except that it operates on a structured output
with two modes.

C. Self-supervised and supervised competitors

We compare SKY against three self-supervised systems:
• Krumhansl [18]. A template matching algorithm for CQT

features in which major and minor templates are derived from
psychoacoustic judgments, with no machine learning.

• 24-STONE [16]. The self-supervised SOTA. It relies on CPSD
for equivariance to key signature and on BCE for invariance to
mode, with no pseudo-labels.

• ν-STONE. A simple new method which is an ad hoc procedure
using a pre-trained STONE model [16]’s prediction of key
signature and the rule-based heuristic ν (Section II-C) for mode
prediction which requires no further training.

In addition, we compare SKY against the supervised SOTA:
• madmom [17]. An all-convolutional neural network, trained on

a varied corpus (electronic dance music, pop/rock, and classical
music) and made available as part of the madmom open-source
software library for MIR [19, v0.16.1].

D. Evaluation datasets and metrics

We evaluate all systems on the following four datasets, which are
labeled according to a taxonomy of 24 major and minor keys:

• FMAKv2 [16]. 5,489 songs from the Free Music Archive (FMA),
spread across 17 genres. It contains key annotation for each song
and genre annotations for nearly half of them.

• GTZAN [20]. 837 songs from 9 genres. Only songs with a unique
key are annotated, therefore no classical music is included.

• GiantSteps [21]. 604 two-minute excerpts of electronic dance
music (EDM) from commercial songs.

• SWD [22]. 48 classical music pieces composed by Schubert. We
only use the first 30s given that key modulations are common
in classical music.

The MIREX score, as implemented in mir eval, is weighted according
to the tonal proximity between reference and prediction [23]. Key
signature estimation accuracy (KSEA) assigns a full point to the
prediction if it matches the reference and a half point if the prediction
is one perfect fifth above or below the reference, and zero otherwise
[16]. Mode accuracy assigns a full point if reference and prediction
share the same mode (major or minor) and zero otherwise.

IV. RESULTS

A. Self-supervised learning from 60k songs

We train all SSL methods on the same 60k-song corpus (see Section
III-A) and compare them against a template matching algorithm
(Krumhansl [18]) and the supervised SOTA [17].

Table I summarizes our results on FMAKv2, the largest dataset
to date for evaluating tonality estimation. SKY outperforms the
SSL SOTA (24-STONE) as well as Krumhansl’s template matching
algorithm. Furthermore, on all three metrics, the performance of SKY
is within one percentage point of the supervised SOTA. Thus, SKY
offers the first proof of feasibility for the value of SSL in full-fledged
tonality estimation, i.e., with a taxonomy of 24 keys.

MIREX (%) KSEA (%) mode acc. (%)
Krumhansl [18] 53.4 60.1 64.9
24-STONE [16] 57.9 78.0 62.2
ν-STONE 67.8 79.1 74.1
SKY (60k) 72.1 80.3 79.0
madmom [17] 73.1 81.3 79.3

TABLE I
CLASSIFICATION OF MAJOR AND MINOR KEYS IN THE FMAKV2 DATASET
ACCORDING TO THREE METRICS: MIREX score, key signature estimation

accuracy (KSEA) and mode accuracy. Krumhansl’s method involves no
training, while 24-STONE, ν-STONE, and SKY are self-supervised on the

same dataset of 60k songs. We include the results of the madmom library as
supervised state-of-the-art for reference.

Breaking down the MIREX score into finer-grained metrics, we
observe that the gap in performance between 24-STONE and ν-
STONE is primarily attributable to a higher mode accuracy (62.2%
versus 74.1%) rather than to a higher key signature estimation accuracy
(KSEA, 78.0% versus 79.1%). This observation confirms that the
rule-based procedure ν (see Section II-C) is more effective for
distinguishing a major key from its relative minor than the BCE-
based loss initially developed for 24-STONE.

Unlike ν-STONE, SKY is trained from scratch to minimize a
joint SSL objective (Equation (8)) in which ν plays the role of a
pseudo-labeling function. We posit that this joint optimization creates a
virtuous circle: a lower value of the loss improves the informativeness
of pseudo-labels, thus making the pretext task less ambiguous, and



so forth. Hence, the data-driven component in SKY is able to refine
and surpass the ad hoc procedure in ν-STONE.

From ν-STONE to SKY, there is not only an improvement in terms
of mode accuracy (74.1% versus 79.0%), but also in terms of KSEA
(79.1% versus 80.3%). This seems to be a benefit of weight sharing
and structured prediction in SKY.

B. Scaling up to 1M songs

Inspired by recent works on large-scale SSL for MIR [8], [24],
we retrain SKY on a corpus of 1M songs from the Deezer catalog.
Then, we evaluate both versions of SKY on FMAKv2 as well as
three other annotated datasets: see Section III-D. Table II summarizes
our findings. After SSL on 1M songs, SKY performs on-par with the
supervised SOTA across all datasets. Scaling up the training set of
SKY appears beneficial for three datasets out of four.

Dataset FMAKv2 GTZAN GiantSteps SWD
#songs 5,489 837 604 40
SKY (60k) 72.1 70.9 71.7 89.0
SKY (1M) 73.2 73.8 71.2 90.4
madmom [17] 73.1 67.9 71.0 87.7

TABLE II
MIREX SCORE (%) OF SKY AFTER SELF-SUPERVISED TRAINING ON 60K
OR 1M SONGS. We compare with the madmom package as supervised state
of the art. Note: for madmom, we report a score that is lower than the one

reported in the original paper [17], i.e., 74.6%, which might due to the
different implementations used in madmom and in original paper.

C. Error analysis across genres

Figure 2 compares SKY versus the supervised SOTA across multiple
datasets and genres. Within GTZAN, both methods achieve a MIREX
score above 90% on country and below 50% on blues. In other words,
the gap in MIREX score across genres is much greater than the gap
between the two methods over GTZAN as a whole. Arguably, the
MIREX taxonomy of 24 keys is inadequate for blues [25], [26]—
likewise, to some extent, for jazz and hip-hop. We leave this important
question to future work.

Moreover, the performance for jazz shows a large difference between
FMAKv2 and Giantsteps. This might be due to the differing genre
taxonomies and varying definitions of keys used by annotators [27].

With this caveat in mind, we observe that SKY outperforms the
supervised SOTA on genres with diverse musical features: e.g., metal,
jazz, and reggae. This suggests that SSL with SKY learns invariant
representations of tonality. The only large downgrade from madmom to
SKY is old-time/historic, a small subcorpus of 16 songs in FMAKv2.
The small amount of data could lead to a noisy MIREX score.

D. Visualization of SKY embeddings

We interpret SKY via principal component analysis (PCA) of
intermediate features after uniform averaging over time and across
ChromaNet channels. As shown in Figure 3, songs in FMAKv2 form
a ring pattern which is well explained by the circular progression of
fifths, both for major keys (left) and minor keys (right). Crucially,
PCA on CQT features does not show such interpretable patterns.

The circularity of key signatures in SKY embeddings results from
equivariance in our pretext task design. This observation is reminiscent
of foundational work on self-organizing maps for music cognition [28]
and more recent work on unsupervised learning of octave equivalence
[29]. Meanwhile, the originality of our finding is that it was obtained
by analyzing an unlabled corpus of 1M songs, as opposed to subjective
ratings [28] or monophonic sounds [29].

Fig. 2. Comparison between the supervised state of the art (x-axis) and SKY
after self-supervised training on 1M songs (y-axis) in terms of MIREX score,
across datasets and genres. The size of each marker is proportional to the
number of songs in the corresponding subcorpus.

Fig. 3. 2-D visualization of FMAKv2 songs in major and minor keys after
self-supervised embedding with SKY (trained on 1M songs) and principal
component analysis (PCA). Hue indicates key on the circle of fifths, with key
labels point at class centroids.

V. CONCLUSION

The promise of self-supervised learning (SSL) in music information
retrieval is to harness large unlabeled music corpora to train deep
neural networks with little or no annotation effort. In this article,
we have presented SKY, an architecture and pretext task for self-
supervised learning of 24 keys from audio. After SSL on 1M songs,
SKY matches the supervised SOTA on four datasets. The main
limitation behind SKY is that its structured prediction is limited
to 24 major and minor keys, making it inadequate for certain
genres. Still, the methodological contributions of SKY—namely, cross-
power spectral density and pitch-invariant pseudo-labeling—could,
in principle, apply to blues harmony and modal harmony, given
appropriate training data and music-theoretical knowledge.
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[12] Antonin Gagneré, Slim Essid, and Geoffroy Peeters, “Adapting pitch-
based self supervised learning models for tempo estimation,” in
Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2024, pp. 956–960.

[13] Dorian Desblancs, Vincent Lostanlen, and Romain Hennequin, “Zero-
note samba: Self-supervised beat tracking,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2023.

[14] Keunwoo Choi and Kyunghyun Cho, “Deep unsupervised drum
transcription,” in Proceedings of the International Society for Music
Information Retrieval (ISMIR) Conference, 2019.

[15] Morgan Buisson, Brian Mcfee, Slim Essid, and Helene-Camille Crayen-
cour, “Learning multi-level representations for hierarchical music
structure analysis,” in Proceedings of the International Society for
Music Information Retrieval (ISMIR), 2022.

[16] Yuexuan Kong, Vincent Lostanlen, Gabriel Meseguer-Brocal, Stella Wong,
Mathieu Lagrange, and Romain Hennequin, “Stone: Self-supervised
tonality estimator,” International Society for Music Information Retrieval
Conference (ISMIR), 2024.

[17] Filip Korzeniowski and Gerhard Widmer, “Genre-agnostic key clas-
sification with convolutional neural networks,” in Proceedings of the
International Society on Music Information Conference (ISMIR), 2018.

[18] Carol L. Krumhansl, Cognitive foundations of musical pitch, Oxford
University Press, 2001.
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