Knowledge representation for neuro-symbolic digital building twin querying - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Knowledge representation for neuro-symbolic digital building twin querying

Stéphane Reynaud
  • Fonction : Auteur
  • PersonId : 1426445
Anthony Dumas
  • Fonction : Auteur
  • PersonId : 1321428
Ana Roxin
  • Fonction : Auteur
  • PersonId : 1426446

Résumé

The complexity of modern construction projects necessitates collaboration among diverse stakeholders and the handling of substantial data volumes. Significant investments in digitization have occurred globally to address this complexity, emphasising the need for interoperability among standards and diverse knowledge sources. The emergence of Digital Building Twins (DBTs) further underscores the importance of integrating heterogeneous data to create comprehensive digital representations of buildings. DBTs enable real-time data integration and support various phases of architectural development, offering practitioners access to historical, present, and predictive data. In this context, our research focuses on enhancing the accessibility and interpretability of DBT data through natural language querying. Leveraging domain-specific ontology and advanced AI techniques, our approach facilitates efficient communication between users and DBTs, enabling rapid extraction of specific building details. This paper presents our methodology, including knowledge representation, semantic analysis, and information extraction, along with evaluation results demonstrating its effectiveness in improving DBT querying performance.
Fichier principal
Vignette du fichier
AI4DTCP_16052024.pdf (989.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04733228 , version 1 (11-10-2024)

Licence

Identifiants

  • HAL Id : hal-04733228 , version 1

Citer

Stéphane Reynaud, Anthony Dumas, Ana Roxin. Knowledge representation for neuro-symbolic digital building twin querying. AI4DT&CP@IJCAI2024: The Second Workshop on AI for Digital Twins and Cyber-Physical Applications in conjunction with 33rd International Joint Conference on Artificial Intelligence (IJCAI), Aug 2024, Jeju City, Jeju Island, South Korea. ⟨hal-04733228⟩
10 Consultations
17 Téléchargements

Partager

More