Greibach Normal Form for ω-Algebraic Systems and Weighted Simple ω-Pushdown Automata - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Greibach Normal Form for ω-Algebraic Systems and Weighted Simple ω-Pushdown Automata

Résumé

In weighted automata theory, many classical results on formal languages have been extended into a quantitative setting. Here, we investigate weighted context-free languages of infinite words, a generalization of ω-context-free languages (Cohen, Gold 1977) and an extension of weighted context-free languages of finite words (Chomsky, Schützenberger 1963). As in the theory of formal grammars, these weighted languages, or ω-algebraic series, can be represented as solutions of mixed ω-algebraic systems of equations and by weighted ω-pushdown automata.

In our first main result, we show that mixed ω-algebraic systems can be transformed into Greibach normal form. Our second main result proves that simple ω-reset pushdown automata recognize all ω-algebraic series that are a solution of an ω-algebraic system in Greibach normal form. Simple reset automata do not use ε-transitions and can change the stack only by at most one symbol. These results generalize fundamental properties of context-free languages to weighted languages.

Fichier principal
Vignette du fichier
droste_dziadek_kuich-greibach_normal_form_for_omega_algebraic_systems_and_weighted_simple_omega_pushdown_automata-2019.pdf (462.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04732208 , version 1 (11-10-2024)

Identifiants

Citer

Manfred Droste, Sven Dziadek, Werner Kuich. Greibach Normal Form for ω-Algebraic Systems and Weighted Simple ω-Pushdown Automata. 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019), Dec 2019, Bombay, Mumbai, India. ⟨10.4230/LIPIcs.FSTTCS.2019.38⟩. ⟨hal-04732208⟩
4 Consultations
2 Téléchargements

Altmetric

Partager

More