Snow alga Sanguina aurantia as revealed through de novo genome assembly and annotation
Résumé
Abstract To thrive on melting alpine and polar snow, some Chlorophytes produce an abundance of astaxanthin, causing red blooms, often dominated by genus Sanguina. The red cells have not been cultured, but we recently grew a green biciliate conspecific with Sanguina aurantia from a sample of watermelon snow. This culture provided source material for Oxford Nanopore Technology and Illumina sequencing. Our assembly pipeline exemplifies the value of a hybrid long- and short-read approach for the complexities of working with a culture grown from a field sample. Using bioinformatic tools we separated assembled contigs into two genomic pools based on a difference in GC content (57.5% and 55.1%). We present the data as two assemblies of S. aurantia variants but explore other possibilities. High-throughput chromatin conformation capture analysis (Hi-C sequencing) was used to scaffold the assemblies into a 96 MB genome designated ‘A’ and a 102 MB genome designated ‘B’. Both assemblies are highly contiguous: genome A consists of 38 scaffolds with an N50 of 5.4 Mb while genome B has 50 scaffolds with an N50 of 6.4 Mb. RNA-sequencing was used to improve gene annotation.