Theoretical study of structure sensitivity on ceria‐supported single platinum atoms and its influence on carbon monoxide adsorption
Résumé
Abstract Density functional theory (DFT) calculations explore the stability of a single platinum atom on various flat, stepped, and defective ceria surfaces, in the context of single‐atom catalysts (SACs) for the water–gas shift (WGS) reaction. The adsorption properties and diffusion kinetics of the metal strongly depend on the support termination with large stability on metastable and stepped CeO 2 (100) and (210) surfaces where the diffusion of the platinum atom is hindered. At the opposite, the more stable CeO 2 (111) and (110) terminations weakly bind the platinum atom and can promote the growth of metallic clusters thanks to fast diffusion kinetics. The adsorption of carbon monoxide on the single platinum atom supported on the various ceria terminations is also sensitive to the surface structure. Carbon monoxide weakly binds to the single platinum atom supported on reduced CeO 2 (111) and (211) terminations. The desorption of the CO 2 formed during the WGS reaction is thus facilitated on the latter terminations. A vibrational analysis underlines the significant changes in the calculated scaled anharmonic CO stretching frequency on these catalysts.
Fichier principal
JCC-24-0003_Article_Revisions_NonHighlightedText_vHAL.pdf (5.45 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|