Theoretical study of structure sensitivity on ceria‐supported single platinum atoms and its influence on carbon monoxide adsorption - Archive ouverte HAL
Article Dans Une Revue Journal of Computational Chemistry Année : 2024

Theoretical study of structure sensitivity on ceria‐supported single platinum atoms and its influence on carbon monoxide adsorption

Antoine Salichon
Agustin Salcedo
Carine Michel
David Loffreda

Résumé

Abstract Density functional theory (DFT) calculations explore the stability of a single platinum atom on various flat, stepped, and defective ceria surfaces, in the context of single‐atom catalysts (SACs) for the water–gas shift (WGS) reaction. The adsorption properties and diffusion kinetics of the metal strongly depend on the support termination with large stability on metastable and stepped CeO 2 (100) and (210) surfaces where the diffusion of the platinum atom is hindered. At the opposite, the more stable CeO 2 (111) and (110) terminations weakly bind the platinum atom and can promote the growth of metallic clusters thanks to fast diffusion kinetics. The adsorption of carbon monoxide on the single platinum atom supported on the various ceria terminations is also sensitive to the surface structure. Carbon monoxide weakly binds to the single platinum atom supported on reduced CeO 2 (111) and (211) terminations. The desorption of the CO 2 formed during the WGS reaction is thus facilitated on the latter terminations. A vibrational analysis underlines the significant changes in the calculated scaled anharmonic CO stretching frequency on these catalysts.
Fichier principal
Vignette du fichier
JCC-24-0003_Article_Revisions_NonHighlightedText_vHAL.pdf (5.45 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04728557 , version 1 (21-10-2024)

Identifiants

Citer

Antoine Salichon, Agustin Salcedo, Carine Michel, David Loffreda. Theoretical study of structure sensitivity on ceria‐supported single platinum atoms and its influence on carbon monoxide adsorption. Journal of Computational Chemistry, 2024, 45 (25), pp.2167-2179. ⟨10.1002/jcc.27393⟩. ⟨hal-04728557⟩
61 Consultations
10 Téléchargements

Altmetric

Partager

More