Elevated pyramidal cell firing orchestrates arteriolar vasoconstriction through COX-2-derived prostaglandin E2 signaling - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Elevated pyramidal cell firing orchestrates arteriolar vasoconstriction through COX-2-derived prostaglandin E2 signaling

Résumé

Abstract Neurovascular coupling, linking neuronal activity to cerebral blood flow, is essential for brain function and underpins functional brain imaging. Whereas mechanisms involved in vasodilation are well-documented, those controlling vasoconstriction remain overlooked. This study unravels the mechanisms by which pyramidal cells elicit arteriole vasoconstriction. Using patch-clamp recording, vascular and Ca 2+ imaging in mouse cortical slices, we show that strong optogenetic activation of layer II/III pyramidal cells induces vasoconstriction, correlating with firing frequency and somatic Ca 2+ increase. Ex vivo and in vivo pharmacological investigations indicate that this vasoconstriction predominantly recruits prostaglandin E2 through the cyclooxygenase-2 pathway, and activation of EP1 and EP3 receptors. We also present evidence that specific interneurons releasing neuropeptide Y, and astrocytes, through 20-hydroxyeicosatetraenoic acid, contribute to this process. By revealing the mechanisms by which pyramidal cells lead to vasoconstriction, our findings shed light on the complex regulation of neurovascular coupling. Significance statement Cerebral blood flow is tightly controlled by neuronal activity, a process termed neurovascular coupling which serves as the physiological basis for functional brain imaging widely used to map neuronal activity in health and diseases. While the prevailing view links increased neuronal activity with enhanced blood perfusion, our data suggest that elevated neuronal activity can also reduce cerebral blood flow. By optically controlling the activity of pyramidal cells, we demonstrate that these excitatory neurons induce vasoconstriction when their action potential firing is increased by releasing glutamate and lipid messengers. These findings update the interpretation of functional brain imaging signals and help to better understand the etiopathogenesis of epilepsy and Alzheimer’s disease, in which hyperactivity, hypoperfusion and cognitive deficits overlap.
Fichier principal
Vignette du fichier
2024.03.27.586974v3.full.pdf (1.96 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04727642 , version 1 (09-10-2024)

Licence

Identifiants

Citer

Benjamin Le Gac, Marine Tournissac, Esther Belzic, Sandrine Picaud, Isabelle Dusart, et al.. Elevated pyramidal cell firing orchestrates arteriolar vasoconstriction through COX-2-derived prostaglandin E2 signaling. 2024. ⟨hal-04727642⟩
96 Consultations
13 Téléchargements

Altmetric

Partager

More