Polyhedral CAT(0) metrics on locally finite complexes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Polyhedral CAT(0) metrics on locally finite complexes

Karim A. Adiprasito
  • Fonction : Auteur
Louis Funar

Résumé

We prove the arborescence of any locally finite complex that is $CAT(0)$ with a polyhedral metric for which all vertex stars are convex. In particular locally finite $CAT(0)$ cube complexes or equilateral simplicial complexes are arborescent. Moreover, a triangulated manifold admits a $CAT(0)$ polyhedral metric if and only if it admits arborescent triangulations. We prove eventually that every locally finite complex which is $CAT(0)$ with a polyhedral metric has a barycentric subdivision which is arborescent.

Dates et versions

hal-04727395 , version 1 (09-10-2024)

Identifiants

Citer

Karim A. Adiprasito, Louis Funar. Polyhedral CAT(0) metrics on locally finite complexes. 2024. ⟨hal-04727395⟩
13 Consultations
0 Téléchargements

Altmetric

Partager

More