Vortex sheet solutions for the Ginzburg–Landau system in cylinders: symmetry and global minimality
Résumé
and M ≥ N + 1, the following dichotomy occurs between escaping and non-escaping solutions: there exists ε N > 0 such that • if ε ∈ (0, ε N ), then every global minimizer is an escaping radially symmetric vortex sheet solution of the form Rũ ε where ũε (x, z) = ( fε (|x|
• if ε ≥ ε N , then the non-escaping radially symmetric vortex sheet solution
) n is the unique global minimizer; moreover, there are no bounded escaping solutions in this case.
We also discuss the problem of vortex sheet S M-1 -valued harmonic maps.
Origine | Fichiers produits par l'(les) auteur(s) |
---|