Exact antichain saturation numbers via a generalisation of a result of Lehman-Ron - Archive ouverte HAL
Article Dans Une Revue Combinatorial Theory Année : 2024

Exact antichain saturation numbers via a generalisation of a result of Lehman-Ron

Carla Groenland
  • Fonction : Auteur
  • PersonId : 1421863
Hugo Jacob
Tom Johnston
  • Fonction : Auteur
  • PersonId : 1421865

Résumé

For given positive integers k and n, a family F of subsets of {1, . . . , n} is kantichain saturated if it does not contain an antichain of size k, but adding any set to F creates an antichain of size k. We use sat * (n, k) to denote the smallest size of such a family. For all k and sufficiently large n, we determine the exact value of sat * (n, k). Our result implies that sat * (n, k) = n(k -1) -Θ(k log k), which confirms several conjectures on antichain saturation. Previously, exact values for sat * (n, k) were only known for k up to 6.

We also prove a strengthening of a result of Lehman-Ron which may be of independent interest. We show that given m disjoint chains C 1 , . . . , C m in the Boolean lattice, we can create m disjoint skipless chains that cover the elements from ∪ m i=1 C i (where we call a chain skipless if any two consecutive elements differ in size by exactly one).

Fichier principal
Vignette du fichier
eScholarship UC item 2s4544d9.pdf (581.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04720670 , version 1 (03-10-2024)

Licence

Identifiants

Citer

Paul Bastide, Carla Groenland, Hugo Jacob, Tom Johnston. Exact antichain saturation numbers via a generalisation of a result of Lehman-Ron. Combinatorial Theory, 2024, 4 (1), ⟨10.5070/C64163848⟩. ⟨hal-04720670⟩
25 Consultations
15 Téléchargements

Altmetric

Partager

More