SAR image synthesis using text conditioned pre-trained generative AI models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

SAR image synthesis using text conditioned pre-trained generative AI models

Résumé

We explore the utilization of artificial intelligence (AI) generative models for creating high-resolution airborne Synthetic Aperture Radar (SAR) images. Our methodology involves the use of a text-conditioned latent diffusion architecture to train a generative model. We use a database of high-resolution SAR images obtained from the SETHI sensor at ONERA for training purposes. This model is capable of generating synthetic images based on textual prompts provided by users. Additionally, we illustrate the model's versatility for various applications, such as generating SAR images from handdrawn sketches.
Fichier principal
Vignette du fichier
DTIS2024-084_postprint.pdf (444.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04718866 , version 1 (02-10-2024)

Identifiants

  • HAL Id : hal-04718866 , version 1

Citer

Nicolas Trouvé, Nathan Letheule, Olivier Lévêque, Ilias Rami, Elise Colin. SAR image synthesis using text conditioned pre-trained generative AI models. EUSAR 2024, Apr 2024, Munich, Germany. ⟨hal-04718866⟩
8 Consultations
2 Téléchargements

Partager

More