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1 Introduction

Synthetic Aperture Radar (SAR) image synthesis and sim-

ulation have diverse applications in sensor design and sig-

nal processing algorithm evaluation. Traditionally, this

field relied on physics-based simulations using electromag-

netic modeling for vehicles and scenes. However, the

emergence of deep neural network techniques has led to

efforts to apply these methods to SAR image generation.

Early network architectures predominantly utilized convo-

lutional networks and the Generative Adversarial Network

(GAN) framework. These networks, comprising a gen-

erator and discriminator, were constrained in scale, often

working with small image sizes. They typically operated

on pairs of images, such as optical and SAR images or

different-frequency SAR images of the same area, aiming

to convert one image type into another, akin to style trans-

fer. This approach required training from scratch, posing

challenges related to model depth and dataset size.

Recent research has introduced foundation models, exem-

plified by Meta’s Segment Anything Model (SAM), Llama,

and Runway’s Stable Diffusion. These transformer-based

models, trained for extensive hours on large open datasets,

boast billions of parameters and exceptional generalization

capabilities, despite being trained on internet-sourced data.

Compared to previous models, foundation models offer the

advantage of minimal fine-tuning, leveraging their inherent

capabilities. However, they require powerful GPUs and ne-

cessitate careful fine-tuning on smaller datasets to prevent

overfitting.

In this paper, we present the results of fine-tuning the Sta-

ble Diffusion foundation model using real ONERA SETHI

X band SAR images. We start in section 2 with a brief

overview of the model’s architecture, components, and ini-

tial training data. Next, we discuss various fine-tuning

methods relevant to our domain. We detail our image

Figure 1 Autoencoder principle, images in pixel space
are encoded into their latent space equivalent, and can be

decoded back in pixel space

dataset and automated image captioning process in section

3, concluding with examples and use cases, such as text-to-

image and sketch-to-image generation in section 4, before

concluding.

2 Text conditioned latent diffusion

In this section, we describe the architecture of the latent

diffusion model as initially outlined in [1] and further elab-

orated in [2]. This description is tailored for the conference

audience; readers acquainted with the principles may pro-

ceed to the subsequent section. As summarized in Figure

4, a latent diffusion model comprises three primary com-

ponents:

• Variational Auto Encoder

• Text Encoder

• U-net : Noise predictor

Their purpose is detailed in the following sections.

2.1 Variational Auto Encoder
An autoencoder, a fundamental component in many deep

learning architectures, consists of two parts: an encoder
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Figure 2 Text encoder, words are convered to a vector

through the tokenizer which is further process by a text

encoder into an embedding

and a decoder. The encoder compresses a natural im-

age from pixel space into a more compact vector in latent
space. This compression, as used in [3] and this paper, re-

duces a 512×512×3 image into a 64×64×4 sized latent

representation, a reduction factor of 48. Despite this sig-

nificant compression, the decoder can efficiently revert the

process as shown Figure 1, restoring the image to its origi-

nal space and size, leveraging the manifold hypothesis [4].

However, this compression is not lossless and can impact

image quality. The effect on the compressed image de-

pends on its similarity to the images used during the train-

ing stage. Variational Auto Encoders (VAE), an advanced

form of autoencoders, differ as the encoder output is a dis-

tribution of vectors (mean and variance) rather than a single

deterministic vector. During learning, a vector is sampled

from this distribution before being processed back through

the decoder. This alteration enforces latent normalization

and induces latent continuity, granting the VAE generative

properties. As an example most interpolated latents can

be decoded into a coherent image, enhancing the model’s

generative capabilities.

2.2 Text Encoder
The role of a text encoder is to process text or prompts

for use as conditioning in the generative process. Initially,

a tokenizer converts the word sequence into an embed-

ding vector, where each word or sub-word, named token,

is mapped to a number via a dictionary. The text encoder

fixes the maximum number of tokens. This raw embedding

undergoes further processing through a text transformer,

which outputs a conditioning vector representing the text

sequence’s meaning rather than the individual words. For

instance, words with similar meanings (e.g., plane and air-

craft) will produce similar vectors as illustrated Figure 2.

The attention processing within the model also allows the

relative position of words, sentence structure, and grammar

to influence the output vector.

In the model utilized in this paper (ViT-L/14 Clip [5]), the

text encoder has a modest number of parameters (123 Mil-

lions compared to the 150 Billions of GPT3 [6]), limiting

its understanding of text descriptions. Consequently, the

model may often misinterpret detailed prompts involving

relative positions or specific item colors.

Figure 3 Iterative use of an U-net model as a noise es-

timator to substract noise at each step (exemple in pixel

space)

2.3 Noise predictor U-net
The noise predictor, central to the diffusion process, aims

to estimate noise in a given input image. The analogy of

diffusion arises from the mathematical similarity between

the chosen noise modeling and the physical modeling of

particles dispersing in a fluid over time, progressively ob-

scuring the initial state (i.e., the image without noise). The

mathematical model, involving differential equations, is in-

verted by the network in an effort to recover the initial state

from a subsequent diffuse state.

Employing the U-net architecture [7], the noise predictor

is trained on pairs of images with varying levels of added

noise, estimating the artificially added noise. As the largest

network in the latent diffusion architecture, the noise-

predicting U-net can process all frequencies and scales of

noise simultaneously due to its convolutional structure. Al-

though theoretical denoising could occur in a single step,

practical implementation benefits from iterative denoising

for enhanced output results as shown in Figure 3. The

model estimates the noise amount and removes only a por-

tion according to a predetermined noise schedule, which

define the noise removal at each step (linear or exponen-

tial). Utilizing more steps reduces estimation errors at the

expense of increased computational time.

In latent diffusion models, the U-net receives the text en-

coder’s output as a conditioning vector, applied at every U-

net layer and each iterative denoising step using the cross-

attention mechanism [8]. During training, this condition-

ing serves as additional prior information about the image

content, aiding the U-net in improving its noise estimation.

It is notable that while diffusion could occur directly in

pixel space, operating in a sparsely compressed space en-

hances the model’s efficiency.

2.4 Assembled workflow
2.4.1 Text to image generation
In text-to-image synthesis, as illustrated in Figure 4, the

aforementioned models operate as follows. An initial latent

noise image is generated based on a seed. The text input, or

prompt, is processed through the text encoder into a condi-

tioning vector. Optionally, a second text can be processed

similarly to serve as negative conditioning (named Nega-



Figure 4 Text to image workflow involving a text en-

coder, a variational auto encoder (VAE) and a noise esti-

mating U-net operating in latent space

tive Prompt), preventing certain concepts from appearing

in the resultant image. Over a predetermined number of

steps, and following a noise schedule, the U-net, condi-

tioned by the embeddings, estimates and removes noise

from the latent image at each step. Upon complete noise

removal, the latent is decoded using the VAE decoder into

a pixel space image, rendering it interpretable by humans.

2.4.2 Image to image
An alternative application of the models begins with an ex-

isting image. Instead of using pure latent noise, the input

image is encoded through the VAE, and a variable amount

of noise is added before proceeding with the same text-

to-image process using a noise schedule adapted to the

amount of latent noise added. The applications of this pro-

cess are further elaborated in the final section of this paper.

2.5 Training
2.5.1 Initial Training
The first published Stable Diffusion model [9], with both

architecture and weights available and a reasonable model

size (860 million parameters for the U-net), is executable

on consumer hardware, making it a prime foundation

model for text-to-image generation.

The initial training utilized the LAION5B database [10],

comprising 5.85 billion images from open sources and ran-

dom internet scraping. Automatic captioning was per-

formed using CLIP [5], and the database was filtered for

content, size, and quality. The training consumed approx-

imately 150,000 hours on A100 GPUs for version 1.0 and

nearly 600,000 hours for version 1.5. Initially, the VAE

part of the model is trained independently and then frozen,

ensuring a converged latent space representation as the pro-

cess foundation. The pre-trained and frozen text encoder

from CLIP was used during the U-net training, which con-

stituted the majority of the training process.

A examination of the LAION5B database reveals few rep-

resentation of SAR images, primarily downscaled large-

scale images from general news articles by space agencies

or regular newspapers covering havoc. The base model’s

text-to-image generation further underscores its inability

to produce credible SAR images, necessitating additional

training.

2.6 Fine Tuning
Since Stable Diffusion was made open source in [3], the

community has undertaken extensive work to adapt the

base model to various needs. A primary challenge in fine-

tuning a foundation model lies in managing the learning

process with datasets that are several orders of magnitude

smaller than those used in initial training. Maintaining a

critical ratio between the model’s number of parameters

and the amount of data is vital to prevent overfitting, which

could not only diminish the base model’s ability to gener-

ate content within its initial learning spectrum but also im-

pair the generalization capacity for new content introduced

through fine-tuning. Another significant consideration is

the computing power and time required for the fine-tuning

process, which, in many cases, has been designed to be ac-

cessible to high-end consumer hardware.

Two main strategy can be developed and are explained in

the following section.

2.6.1 Full or partial fine tuning
The second approach involves retraining components of

the base model, often involving the U-net, optionally the

text encoder, and in rare instances, the VAE. Fine-tuning

the network entails updating all weights involved in the

original network, adhering to the same process utilized in

the initial training. This method is technically as mem-

ory and computationally intensive as the initial training, al-

though the smaller database allows it to be executed within

a timescale of hours on a single computer. This process is

susceptible to all potential pitfalls arising from overlearn-

ing. The outcome is a completely new model, branching

from the original, with new or modified capacities. While

this method is ideally suited for training new concepts,

it may require special attention when dealing with small

database inputs. One method, known as DreamBooth [11],

develop the concept of utilizing the model itself to gener-

ate regularization images, which are then fed back into the

model during the fine-tuning process, as a strategy to pre-

vent overlearning when using a very limited number of im-

ages (typically fewer than 10). These additional generated

images, usually numbering in the thousands, are typically

chosen to describe a broader concept than the subject of the

fine-tuning, often referred to as a class (in our application,

the class might be aerial photography). The result is that

by augmenting the training set with images generated by

the model, one engages in ’prior preservation’. This means

that the fine-tuning process is enforced in a manner that

does not impair the existing capacities of the model.

2.6.2 Low rank methods
The final approach involves modifying only a subsection

of the model or adding an extra layer that intersects two

existing layers. Typically, these modified layers are situ-

ated at critical points in the workflow, such as the cross-

attention section of the model, which interfaces between

the text encoder and the U-net. The remaining parts of

the model stay frozen, making the process less resource-

intensive than training the entire model in terms of both

time and memory usage. Further optimizations leverage



the mathematical properties of these layers or employ so-

called low-rank (LoRa [12]) models. The underlying con-

cept is that a layer connecting M inputs to N outputs can

be represented as a matrix, analogous to a linear algebra

matrix. Assuming this matrix has a limited rank, the num-

ber of parameters requiring estimation can be significantly

reduced. Experience indicates that this assumption holds,

and ranks as low as 4 to 256 can sometimes suffice to en-

hance the model’s capacities, depending on the complex-

ity of the new concept. Various LoRa variants have been

proposed in the literature, including LoHa with Hadamard

product, LoKR with Kronecker product, LoCon modify-

ing the convolution part of the network, and DyLoRa for

adaptive rank estimation. One advantage is that enforcing a

limited number of parameters through a restricted rank can

reduce the risk of overlearning while maintaining the over-

all capacity of a very large model. Another is that, since

the additional inclusions are relatively small, they can eas-

ily be toggled on and off at various stages of generation.

2.6.3 Model choice, data preparation and captioning
After evaluating various options and conducting numerous

attempts, we concluded that, given the Stable Diffusion 1.5

base model and training on a concept significantly diver-

gent from its initial training type, a full fine-tuning was

necessary. Even a very high-rank LoRa was incapable of

capturing all the complexity needed to accurately repro-

duce speckle, layover, and image composition. Our pre-

liminary tests with Stable Diffusion XL [13], a substan-

tially larger model, indicate that full fine-tuning could be

superfluous for this model.

Training with or without prior preservation, utilizing aerial

photography optical images as regularization pictures,

yielded no significant changes in the output. Considering

we do not require the model to maintain its ability to gen-

erate optical images, the final model presented was trained

without them.

3 Dataset

3.1 ONERA’s airborn systems and
database

The SETHI remote sensing system is onboard a Falcon

20 [14], an aircraft developed by Dassault Aviation in the

1970s. This aircraft, equipped with its payload, is certi-

fied by European Aviation Safety Agency (EASA), allow-

ing it to fly worldwide. Since its deployment 15 years ago,

SETHI has acquired numerous SAR images (in Ku, X, L,

and UHF frequency bands) covering various regions of the

globe, including French Guiana, Gabon, Tunisia, Sweden,

Norway, Greenland, and notably metropolitan France. All

raw data, processed images, and associated metadata (tra-

jectories, georeferencing, calibration, etc.) are organized

and stored in an internal ONERA database. These archives

can be queried via a Python API, facilitating the automa-

tion of post-processing tasks on a large volume of data and

the construction of datasets for training AI methods. In this

article, we used X-band SAR images from this database,

covering regions in the south of mainland France, to build

the training dataset. All images were normalized, resam-

pled at a fixed ground square resolution of 0.35 cm then

split into 512 × 512 sized images resulting in a total of

more than 10000 images. Images were kept into their na-

tive SAR orientation, the range axis being in the same di-

rection for all images.

3.2 Automated data captionning
Captioning a large number of SAR images is a challeng-

ing task, no known nor published model have been trained

for this purpose. In this perspective, the creation of a text

invitation, or "prompt", could be achieved by captioning

another image source, such as an optical image sharing the

same geographical coverage and acquired within a compa-

rable timeframe.

This approach is made possible because networks trained

on very large databases of conventional images for caption-

ing have been published in the past years. The state of the

art in captioning includes the following:

• CLIP [5], whose main advantage is generality. How-

ever, it is less effective for abstract tasks such as

counting objects, describing, or interpreting spatial

connections.

• GIT, which has a single image encoder and a single

text decoder, is interesting for its versatility, with the

ability to address three distinct problems: image-to-

text transformation, video-to-text translation, and also

solving Visual Question Answering (VQA) tasks.

• BLIP, an acronym for "Bootstrapping Language-

Image Pre-training for Unified Vision-Language Un-

derstanding and Generation," relies on a multimodal

pre-training architecture integrating encoder-decoders

(MED) [15].

In our work, we chose to use the BLIP algorithm due to

its ability to create comprehensive descriptions that incor-

porate spatial connectivity concepts with typical descrip-

tions such as "a few trees gathered around a clearing" or

to note the presence of a specific element like "a path that

crosses the forest." The drawbacks of all the methods, is

that their training set involve a major proportion or photo-

graph taken at ground heights by hand held devices. Even

if airborn or spaceborn optical images are much more com-

mon than SAR images in the databases used they are still

underrepresented resulting in below average captions qual-

ity. Just like Stable Diffusion those models architecture and

weights have been published and can also be further trained

to improve their performance in our narrower domain. To

this purpose two datasets were used together (RSICD [16]

and UCM [17]).

The metrics we used were employed to compare BLIP’s

performance on remote sensing databases specific to our

field of study. These evaluations led to a comparison of

BLIP’s performance before and after applying the fine-

tuning method on the RSICD and UCM databases.

In the results shown in Table 1, using a wide variety of met-

rics commonly used to measure the similarity between two

text sequences, it is noticed that for the RSICD database,



Methods

Metrics
Blue-1 Blue-2 Blue-3 Blue-4 CIDEr METEOR ROUGE-L

CCSMLF 0.5759 0.3859 0.2832 0.2217 0.5297 0.2128 0.4455

SM Attention + LSTM 0.7571 0.6336 0.5385 0.4611 2.3563 0.3513 0.6458

Cross-Hierarchy attention 0.770 0.649 0.532 0.471 2.363 0.4238 0.651

ML Attention + semantic 0.7597 0.6421 0.5517 0.4623 2.3614 0.3543 0.6563

Multi-level attention 0.7905 0.6782 0.5742 0.5030 2.6309 0.4640 0.7246
Full Transformer 0.560 0.309 1.964 0.298 0.581

(Ours) BLIP-RSICD+UCM 0.8029 0.6941 0.6061 0.5336 2.7239 0.4208 0.7178

Table 1 Table of results for the BLUE, ROUGE, CIDEr, and METEOR metrics on the RSICD database using different

captioning methods.

which has lower resolution, most metrics exhibit better re-

sults than the state-of-the-art. Consequently, we now have

a refined BLIP network, adapted to optical aerial photogra-

phy, thanks to training on two captioning databases for re-

mote sensing, namely UCM and RSICD. This network was

then used to automatically caption optical images sampled

from the footprint of our SAR image database.

4 Applications and results

4.1 Image to text generation
Utilizing the SETHI’s X-band database and automated

captioning from the associated optical images via the fine-

tuned BLIP model, training was conducted based on the

Stable Diffusion 1.5 base model without prior preservation.

Final training encompassed both the text encoder and U-

net, with learning rates of 5e-6 and 5e-5 respectively, using

batches of 16 for up to twelve epochs. ’An aerial view’

was adopted as the activation token, but we will reference

’A SAR image of’ in the example prompts provided in the

illustrations. The learning progress can be visually seen

in 5. As it can be seen on the sample images 6 The net-

work is capable of generating different images in response

to different prompts. This clearly demonstrates that text-

guided SAR image simulation is feasible. The network

successfully established a connection between the concept

of "city" and building generation, as well as distinguishing

fields, forests, and urban areas.

4.2 Combining with other type of condi-
tioning

Currently, the main limitation lies in the constraint of

prompts to capture the truly important concepts in a radar

image. In particular, the images are generated without

the ability to prioritize the spatial organization of specific

content. Therefore, we can explore approaches such as

the ControlNet [18] network, to guide generation not only

based on text but also with spatial considerations using op-

tical imagery, sketches, segmentation maps, or SAR im-

agery acquired at other resolution of frequencies. An ex-

ample using an extra sketch input as an extra conditioning

is shown Figure 7. Finally, a promising perspective would

be to use the diffusion network to add details to a simulated

SAR image generated using a conventional physical simu-

lator like EMPRISE. This approach aims to transform our

simulation, which can sometimes be too idealistic, into a

SAR image that appears more realistic.

5 Conclusion

In summary, this article presents an innovative approach

to generate SAR images using text-to-image techniques,

harnessing the power of diffusion networks and large lan-

guage models. Within the existing landscape of networks,

radar images are notably scarce. To overcome this limita-

tion, we chose to leverage descriptions rooted in the optical

modality, which is far more prevalent, to characterize these

rare and intricate radar images. In doing so, we fully har-

ness the potential of these extensive pre-trained networks

originally trained on large datasets, to benefit radar image

simulation.

We employed a two-tier fine-tuning strategy: at the dif-

fusion model level, we customized the model to high-

resolution aerial SAR images from SETHI (ONERA), and

at the captioning model level (BLIP), we tailored the gen-

eration of descriptions to suit remote sensing images.

This novel approach has yielded promising results. Lever-

aging recent remarkable advancements in large language

models, this work represents a significant step toward

achieving realism in generated images.

As we continue to explore the boundaries of AI-driven im-

age synthesis, the synergy between diffusion models and

language-based guidance presents substantial potential for

a wide range of applications in remote sensing.
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