Advancing Network Intrusion Detection Systems with Machine Learning Techniques - Archive ouverte HAL
Article Dans Une Revue Advances in Artificial Intelligence and Machine Learning Année : 2024

Advancing Network Intrusion Detection Systems with Machine Learning Techniques

Mourad Benmalek
Kamel-Dine Haouam
  • Fonction : Auteur
  • PersonId : 1420397

Résumé

This paper presents an approach to enhancing the efficiency and effectiveness of Network Intrusion Detection Systems (NIDS) by leveraging Machine Learning (ML) techniques, specifically Decision Trees (DT), Naïve Bayes (NB), and Support Vector Machine (SVM). The proposed methodology involves a comprehensive evaluation and comparison of these algorithms using the NSL-KDD and UNSW-NB15 datasets, employing standard evaluation metrics such as accuracy, precision, recall, and F1-score. The study identifies the most effective algorithm for practical NIDS deployment. By providing actionable insights and recommendations for implementing the most suitable ML algorithm, this research contributes significantly to the ongoing efforts in strengthening network security against evolving cyber threats.
Fichier principal
Vignette du fichier
Advancing NIDS with ML Techniques - Benmalek and Haouam.pdf (780.32 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04715388 , version 1 (30-09-2024)

Identifiants

Citer

Mourad Benmalek, Kamel-Dine Haouam. Advancing Network Intrusion Detection Systems with Machine Learning Techniques. Advances in Artificial Intelligence and Machine Learning, 2024, 04 (03), pp.2575-2592. ⟨10.54364/AAIML.2024.43150⟩. ⟨hal-04715388⟩
9 Consultations
5 Téléchargements

Altmetric

Partager

More