Machine Learning Application for Real-Time Simulator - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Machine Learning Application for Real-Time Simulator

Résumé

This paper presents a groundbreaking research initiative that focuses on the development of an intelligent architecture for Adaptive Virtual Reality Systems (AVRS) in immersive virtual environments. The primary objective of this architecture is to enable real-time artificial intelligence training and adapt the virtual environment based on user states or external parameters. In a case study focused on detecting cybersickness, an undesired side effect in immersive virtual environments, we utilized this architecture to train an artificial intelligence model and personalize it for individual users in a driving simulator application. By leveraging the capabilities of this architecture, we can optimize virtual reality experiences for individual users, leading to increased comfort. We evaluated the system’s performance in terms of memory usage, CPU and GPU usage, temperature monitoring, frame rate, and network performance, and our results demonstrated the efficiency of our proposed architecture.
Fichier sous embargo
Fichier sous embargo
0 3 2
Année Mois Jours
Avant la publication
mardi 1 avril 2025
Fichier sous embargo
mardi 1 avril 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04715130 , version 1 (30-09-2024)

Identifiants

Citer

Azadeh Hadadi, Jean-Rémy Chardonnet, Christophe Guillet, Jivka Ovtcharova. Machine Learning Application for Real-Time Simulator. 2024 9th International Conference on Machine Learning Technologies (ICMLT), May 2024, Oslo, Norway. pp.1-5, ⟨10.1145/3674029.3674030⟩. ⟨hal-04715130⟩
72 Consultations
12 Téléchargements

Altmetric

Partager

More