Segmentation and Classification of Airborne GNSS-R Reflectivity Signals with Speckle Noise Mitigation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Segmentation and Classification of Airborne GNSS-R Reflectivity Signals with Speckle Noise Mitigation

Résumé

This article is dedicated to the study of Global Navigation Satellite System Reflectometry (GNSS-R) techniques for remote sensing applications, focusing on classifying the reflectivity of airborne signals to differentiate reflective surfaces along satellite traces. We propose an automatic segmentation algorithm using an online change point detector and off-line change point localization estimate. Given the presence of speckle noise in GNSS signals, a homomorphic log-transformation is applied to mitigate this noise. The system is shown to detect different land-forms in real flight experiments in France, using K-means clustering to identify sand, water bodies, and plain land.

Fichier principal
Vignette du fichier
revised_conference_ICL_2024.pdf (1.72 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04714493 , version 1 (30-09-2024)

Identifiants

Citer

Sarah El Hajj Chehade, Hamza Issa, Georges Stienne, Serge Reboul. Segmentation and Classification of Airborne GNSS-R Reflectivity Signals with Speckle Noise Mitigation. International Conference on Localization and GNSS (ICL-GNSS), Jun 2024, Antwerp, France. pp.1-7, ⟨10.1109/ICL-GNSS60721.2024.10578377⟩. ⟨hal-04714493⟩
20 Consultations
13 Téléchargements

Altmetric

Partager

More