Modelling Commonsense Commonalities with Multi-Facet Concept Embeddings - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Modelling Commonsense Commonalities with Multi-Facet Concept Embeddings

Na Li
  • Fonction : Auteur
  • PersonId : 1419950
Zied Bouraoui
  • Fonction : Auteur
  • PersonId : 1419951
Steven Schockaert
  • Fonction : Auteur
  • PersonId : 1367701

Résumé

Concept embeddings offer a practical and efficient mechanism for injecting commonsense knowledge into downstream tasks. Their core purpose is often not to predict the commonsense properties of concepts themselves, but rather to identify commonalities, i.e. sets of concepts which share some property of interest. Such commonalities are the basis for inductive generalisation, hence high-quality concept embeddings can make learning easier and more robust. Unfortunately, standard embeddings primarily reflect basic taxonomic categories, making them unsuitable for finding commonalities that refer to more specific aspects (e.g. the colour of objects or the materials they are made of). In this paper, we address this limitation by explicitly modelling the different facets of interest when learning concept embeddings. We show that this leads to embeddings which capture a more diverse range of commonsense properties, and consistently improves results in downstream tasks such as ultra-fine entity typing and ontology completion.
Fichier principal
Vignette du fichier
_ACL_2024__Multi_facet.pdf (316.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04713262 , version 1 (29-09-2024)

Identifiants

Citer

Hanane Kteich, Na Li, Usashi Chatterjee, Zied Bouraoui, Steven Schockaert. Modelling Commonsense Commonalities with Multi-Facet Concept Embeddings. Findings of the Association for Computational Linguistics ACL 2024, Aug 2024, Bangkok, France. pp.1467-1480, ⟨10.18653/v1/2024.findings-acl.86⟩. ⟨hal-04713262⟩
8 Consultations
26 Téléchargements

Altmetric

Partager

More