ML-DOA estimation using a sparse representation of array covariance - Archive ouverte HAL
Conference Papers Year : 2024

ML-DOA estimation using a sparse representation of array covariance

Abstract

Sparse Direction-of-Arrival (DOA) estimators depend on the regularization parameter λ which is often empirically tuned. In this work, conducted under the vectorized covariance matrix model, we are looking for theoretical equivalence between the Maximum Likelihood (ML) and sparse estimators. We show that under mild conditions, λ can be chosen thanks to the distribution of the minimum of the ML criterion in the case of two impinging sources. The corresponding λ choice is θinvariant, only requiring an upper bound on the number of sources. Furthermore, it guarantees the global minimum of the sparse ℓ0-regularized criterion to be the ML solution. Numerical experiments confirm that, for the proposed λ, sparse and ML estimators yield the same statistical performance.
Fichier principal
Vignette du fichier
JWOC2024_v2.pdf (332.68 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04712924 , version 1 (28-09-2024)

Licence

Identifiers

  • HAL Id : hal-04712924 , version 1

Cite

Thomas Aussaguès, Anne Ferréol, Alice Delmer, Pascal Larzabal. ML-DOA estimation using a sparse representation of array covariance. 6th Junior Conference on Wireless and Optical Communications (JWOC), Université Paris-Saclay, Oct 2024, Gif-sur-Ivette, France. ⟨hal-04712924⟩
83 View
30 Download

Share

More