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Abstract—Sparse Direction-of-Arrival (DOA) estimators de-
pend on the regularization parameter λ which is often empirically
tuned. In this work, conducted under the vectorized covariance
matrix model, we are looking for theoretical equivalence between
the Maximum Likelihood (ML) and sparse estimators. We show
that under mild conditions, λ can be chosen thanks to the
distribution of the minimum of the ML criterion in the case
of two impinging sources. The corresponding λ choice is θ-
invariant, only requiring an upper bound on the number of
sources. Furthermore, it guarantees the global minimum of the
sparse ℓ0-regularized criterion to be the ML solution.

Numerical experiments confirm that, for the proposed λ,
sparse and ML estimators yield the same statistical performance.

Index Terms—sparse estimation, regularization parameter,
maximum likelihood

I. INTRODUCTION

DOA estimation is a pivotal area in many critical appli-
cations such as radar or telecommunications. Throughout the
last 60 years, a plethora of estimation techniques has been
proposed [1], [2]. On the first hand conventional techniques
such as Capon’s beamformer [3] can not handle multiple
sources. On the other hand, High Resolution (HR) estimators
like MUSIC [4], [5] or ESPRIT [6] overcome this issue by
exploiting the eigenstructure of the array covariance matrix.
Nevertheless, these subspace-based approaches have limited
performance in adversarial scenarios with few array snapshots
or in presence of modeling errors [7]. Finally, the ML esti-
mator [8] achieves the Cramér-Rao Lower Bound (CRLB) at
high Signal-to-Noise Ratio (SNR) [9]. Although its statistical
efficiency, the ML is rarely employed as it requires multi-
dimensional non-convex optimization.

In recent years, there has been a growing interest within the
signal processing processing community on sparse methods
applied to DOA estimation [10] as they exhibit enhanced per-
formances in tough scenarios. Out of the numerous modeling
of the sparse DOA estimation problem, the sparse covariance
matrix representation [11] emerged as a popular choice. In-
deed, it benefits from the Virtual Array [12] concept thus
having increased resolving power and number of identifiable
sources.

For this model, the DOAs can be estimated through the
minimization of a non-convex ℓ0-regularized objective Jℓ0
which is parametrized by λ the regularization parameter. Many
works empirically tuned λ which is unfeasible in practice. In
[13], the authors proposed an interval for the regularization pa-

rameter. However, the interval bounds depends on the sources
directions thus complexifying off-line selection.

In this work, we introduce a novel θ-invariant regularization
parameter choice λ relying on the ML criterion distribution.
This choice ensures the equivalence between ML and sparse
DOA estimators as shown through numerical simulations.

II. MAXIMUM LIKELIHOOD ON THE VECTORIZED
COVARIANCE MATRIX MODEL

A. Vectorized covariance matrix model

We consider a scenario of M independent sources of direc-
tions Θ = {θ1, . . . , θM} impinging on an array of N sensors.
Assuming narrowband hypothesis, the array observation is
given by:

x(t) =

M∑
m=1

a(θm)sm(t) + n(t) = A(Θ)sΘ(t) + n(t) (1)

with A(Θ) the array manifold matrix formed by the
steering vectors a(θm) ∈ CN ,m = 1 . . .M , sΘ(t) =
[s1(t), . . . , sM (t)]T ∈ CM a vector containing the complex
envelopes of the emitted signals and n(t) ∈ CN a complex
Gaussian circular noise, independent of s(t), with covariance
E
[
n(t)nH(t)

]
= σ2IN where E [·] is the temporal mean, (·)H

denotes the complex conjugate transpose and IN the identity
matrix of size N .

The array covariance matrix is then given by:

Rx = E
[
x(t)xH(t)

]
= A(Θ)RsA

H(Θ) + σ2IN (2)

where Rs = E
[
sΘ(t)sHΘ(t)

]
is the sources covariance matrix.

In practice, the covariance matrix is not available. Instead,
Rx is replaced by its estimate R̂x computed using K identi-
cally and independently distributed (i.i.d) array snapshots. As-
suming temporally white noise (∀i ̸= j,E

[
nH(ti)n(tj)

]
= 0),

R̂x can be written as:

R̂x =
1

K

K∑
k=1

x(tk)x
H(tk) = Rx +∆Rx (3)

where K∆Rx is a Wishart noise due to the finite number of
snapshots [14].
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Assuming that sources are uncorrelated, the vectorized
covariance matrix model is obtain from (2, 3) by applying
the column-wise vectorization operator vec(·) to R̂x − σ2IN :

r = vec(R̂x − σ2IN ) =

M∑
m=1

b(θm)γm + δ = B(Θ)γΘ + δ

(4)
where b(θm) = a∗(θm)⊗ a(θm) is the virtual array steering
vector with ⊗ the Kronecker product and (·)∗ the complex
conjugate. The corresponding mixing matrix is referred as
B(Θ) = [b(θ1), . . . ,b(θM )]. γm = E

[
|sm(t)|2

]
denotes

the power of the m-th source and γΘ = [γ1, . . . , γM ]T the
vector of the sources powers. Finally, δ = vec(∆Rx) is the
vectorized noise.

Asymptotically, the vectorized observation asymptotically
follows a multivariate complex Gaussian law CN (µ,Γ,C)
where [15]:

Γ = E
[
(r− µ) (r− µ)

H
]
=

1

K
RT

x ⊗Rx (5)

and C is defined in [15].

B. Maximum Likelihood estimation

For additive Gaussian noise a ML estimator of Θ, known to
achieve the Cramér-Rao lower bound at high Signal-to-Noise
Ratio (SNR), can be be easily obtained from (4) [8]. However,
for non-diagonal covariance matrices such as (5) this yields
a multi-term log-likelihood function. This objective can be
simplified for diagonal covariance matrices leading us to apply
a pre-whitening step to (4):

y = Ŵr = ŴB(Θ)γΘ + δw (6)

where Ŵ =
√
KR̂

−T/2
x ⊗ R̂

−1/2
x is the estimated whiten-

ing matrix and δw = Ŵδ a spatially white noise with
E
[
δwδ

H
w

]
= IN2 . Applying the ML to (6) yields the fol-

lowing estimator of Θ:

JML(Θ) = tr
(
Π⊥(Θ)yyH

)
= yHΠ⊥(Θ)y

Θ̂ = arg min
Θ∈RM

JML(Θ)
(7)

where Π⊥(Θ) = IN2 − (ŴB(Θ))(ŴB(Θ))# is the noise
projector computed for directions Θ with (·)# the Moore-
Penrose pseudo inverse and tr(·) the trace operator. In what
follows, the optimal value of the ML criterion JML is referred
as:

ϵ = min
Θ∈RM

JML(Θ) = JML(Θ̂) = yHΠ⊥(Θ̂)y (8)

III. SPARSE ESTIMATION

A. Sparse modeling

Under the hypothesis that DOAs lie within a predefined grid
of directions Φ = {φ1, . . . , φG} (Θ ⊂ Φ), sparsity can be
introduced in (6) using an overcomplete dictionary B(Φ) =
[b(φ1), . . . ,b(φG)] ∈ CN2×G with G ≫ N2. Thus, we obtain
the following sparse model for the observation y:

y = ŴB(Φ)γ0 + δw (9)

where γ0 is a sparse vector which has exactly M non-zeros
entries corresponding to the sources powers. Thereafter, γ0 is
referred as the sparse spectrum.

B. Sparse problem formulation

The aim of DOA estimation is to find the directions of the
impinging signals from the observation y which corresponds,
in the sparse model (9), to the non-zeros entries of γ0. Thus,
we need to estimate the sparse spectrum γ0 in order to provide
an estimate of Θ. This problem is ill-posed since G ≫ N2.
Hence, the sparsity of γ0 is exploited to ensure the uniqueness
of the solution. Following Delmer’s work [13], an estimate
of γ can be obtained through the minimization of the ℓ0-
regularized objective function given by:

min
γ∈CG

{
Jℓ0(λ,γ) =

1

2
∥y − ŴB(Φ)γ∥22 + λ∥γ∥0

}
(10)

with a suitable regularization parameter λ > 0 which balances
data fidelity towards the solution sparsity.

IV. SELECTION OF THE REGULARIZATION PARAMETER

The choice of λ in (10) is of utmost importance since it con-
trols the trade-off between estimation error and sparsity. Many
approaches exploiting the noise level have been proposed for
ℓ1-regularization [16]–[18]. For the ℓ0 optimization framework
λ is generally empirically tuned given that only few results are
available. Recently, Delmer [13] et al. proposed to choose λ
so that Jℓ0 has a global minimum in γ̂ ie.:

λ > 0 | ∀γ ∈ CG, Jℓ0(λ, γ̂) ≤ Jℓ0(λ,γ) (11)

where γ̂ is the sparse spectrum, in the neighboring of γ0,
obtained using the ML DOA estimate Θ̂ (7). For a given
observation y, the values of λ that achieves condition (11) are
within a stochastic admissible interval IM (y) =

[
λ−
M , λ+

M

]
.

This interval ensures the global minimizer of (10) to be the
ML solution which is an M -sparse vector.

For the case M = 2, the corresponding interval is I2(y) =[
λ−
2 , λ

+
2

]
where:

λ−
2 ≈ c2(y)− c3(y)

2
and λ+

2 ≈ c1(y)− c2(y)

2
(12)

with ck(y) = inf{∥y − ŴB(Φ)γ∥22, ∥γ∥0 = k} the ML
criterion optimal value (8) for a prescribed sparsity level k.
Note that we have c3(y) ≤ c2(y) ≤ c1(y). In the following,
I2 is assumed non-empty (ie. c1(y) > c3(y)).

For arrays presenting robustness against second order am-
biguities for M = 2 sources with equal power, the relation
c2(y) ≪ c1(y) holds. Thus, the following inequality can be
proven:

λ−
2 ≤ 1

2
c2(y) ≤ λ+

2 (13)

Remarking that c2(y) corresponds to the minimum of the
ML criterion (8) ϵ, a suitable regularization parameter choice
satisfying (13) can be formulated as:

λ =
1

2
Fϵ(η) (14)



where Fϵ(η) is the inverse Cumulative Distribution Function
of ϵ for probability η. In [19], we derived the distribution of
ϵ under complex Gaussian non-circular noise. We proved that
ϵ asymptotically has a χ2 distribution with N2 −M degrees
of freedom. The choice of η is discussed in section V.

V. NUMERICAL EXPERIMENTS

We consider an array of N = 6 antennas with 5 antennas
distributed around a circle of radius 0.8λ0 where λ0 denotes
the wavelength and one central sensor. M = 2 sources of
directions θ1 = 180◦, θ2 = 200◦ with K = 200 and SNR =
0dB impinge on this array. Fig. 1 depicts the distribution of
the interval bounds λ−

2 , λ
+
2 and λ = 1

2ϵ. For this scenario, our
regularization parameter choice belongs to the interval thus
ensuring that Jℓ0 global minimizer corresponds to the ML
DOA solution.
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Fig. 1. Histograms of the distributions of λ−
2 , λ+

2 and λ = 1
2
ϵ with

Cumulative Distribution Function (CDF) normalization.

According to [19], we propose to choose η = 0.05 leading
to λ = 1

2F
−1
χ2(34)(0.05) where F−1

χ2(34) is the inverse CDF of
the χ2 law with 34 degrees of freedom.

Finally, we verify that, for the proposed λ choice, ML
and sparse methods lead to the same statistical performance.
To this end, we conducted 10000 independent Monte-Carlo
experiments for SNR values between −20 dB and 20 dB.
The sources are considered resolved if two peaks are detected
and max

{
|θ̂1 − θ1|, |θ̂2 − θ2|

}
< 10◦ where 10◦ corresponds

to the half beamwidth of the virtual array. Results, obtained
with the Forward-Backward splitting algorithm [20], are repre-
sented on Fig.2. For SNR ≥ −4 dB, ML and sparse estimators
have the same statistical performance thus validating the
proposed λ choice.
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Fig. 2. Probability of detection (top) and RMSE (bottom). Given that the two
sources have the same power, results are only represented for direction θ1.

VI. CONCLUSION

In this paper, we proposed a novel regularization choice for
ℓ0-regularized DOA estimation by exploiting the distribution
of the ML criterion thus leading to θ-invariant choice. Through
numerical experiments, we confirmed that the proposed λ
belongs to Delmer’s interval hence ensuring the equivalence
with the ML estimator. This approach must be extended to
scenarios with M > 2 sources. This is an ongoing work.
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