Operator Learning on Free-Form Geometries
Résumé
Operator Learning models usually rely on a fixed sampling scheme for training which might limit their ability to generalize to new situations. We present CORAL, a new method which leverages Coordinate-Based Networks for OpeRAtor Learning without any constraints on the training mesh or input sampling. CORAL is able to solve complex Initial Value Problems such as 2D Navier-Stokes or 3Dspherical Shallow-Water and can perform zero-shot super-resolution to recover a dense grid, even when the training grid is irregular and sparse. It can also be applied to the task of geometric design with structured or point-cloud data, to infer the steady physical state of a system given the characteristics of the domain.
Origine | Fichiers produits par l'(les) auteur(s) |
---|