Article Dans Une Revue Journal of Differential Equations Année : 2012

A weighted gradient theory of phase transitions with a possibly singular and degenerate spatial inhomogeneity

Résumé

This paper studies the asymptotic behavior of a perturbed variational problem for the Cahn–Hilliard theory of phase transitions in a fluid, with spatial inhomogeneities in the internal free energy term. The inhomogeneous term can vanish or become infinite and it can also behave as an appropriate power of the distance from the boundary. The standard minimal interface criterion will be recovered even in spite of such severe degeneracies and/or singularities.

Dates et versions

hal-04702361 , version 1 (19-09-2024)

Identifiants

Citer

Giampiero Palatucci, Enrico Valdinoci. A weighted gradient theory of phase transitions with a possibly singular and degenerate spatial inhomogeneity. Journal of Differential Equations, 2012, 252 (5), pp.3381-3402. ⟨10.1016/j.jde.2011.12.005⟩. ⟨hal-04702361⟩

Collections

UNIMES
7 Consultations
0 Téléchargements

Altmetric

Partager

More