Edge-treewidth: Algorithmic and combinatorial properties
Résumé
We introduce the graph theoretical parameter of edge-treewidth. This parameter occurs in a natural way as the tree-like analogue of cutwidth or, alternatively, as an edge-analogue of treewidth. We study the combinatorial properties of edge-treewidth. We first observe that edgetreewidth does not enjoy any closeness properties under the known partial ordering relations on graphs. We introduce a variant of the topological minor relation, namely, the weak topological minor relation and we prove that edge-treewidth is closed under weak topological minors. Based on this new relation we are able to provide universal obstructions for edge-treewidth. The proofs are based on the fact that edge-treewidth of a graph is parametrically equivalent with the maximum over the treewidth and the maximum degree of the blocks of the graph. We also prove that deciding whether the edge-treewidth of a graph is at most k is an NP-complete problem.
Origine | Fichiers produits par l'(les) auteur(s) |
---|