Edge-treewidth: Algorithmic and combinatorial properties - Archive ouverte HAL
Article Dans Une Revue Discrete Applied Mathematics Année : 2023

Edge-treewidth: Algorithmic and combinatorial properties

Loïc Magne
  • Fonction : Auteur
  • PersonId : 1192431
Christophe Paul
Abhijat Sharma

Résumé

We introduce the graph theoretical parameter of edge-treewidth. This parameter occurs in a natural way as the tree-like analogue of cutwidth or, alternatively, as an edge-analogue of treewidth. We study the combinatorial properties of edge-treewidth. We first observe that edgetreewidth does not enjoy any closeness properties under the known partial ordering relations on graphs. We introduce a variant of the topological minor relation, namely, the weak topological minor relation and we prove that edge-treewidth is closed under weak topological minors. Based on this new relation we are able to provide universal obstructions for edge-treewidth. The proofs are based on the fact that edge-treewidth of a graph is parametrically equivalent with the maximum over the treewidth and the maximum degree of the blocks of the graph. We also prove that deciding whether the edge-treewidth of a graph is at most k is an NP-complete problem.
Fichier principal
Vignette du fichier
edgetw_DAM_revision.pdf (595.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04702071 , version 1 (19-09-2024)

Identifiants

Citer

Loïc Magne, Christophe Paul, Abhijat Sharma, Dimitrios M. Thilikos. Edge-treewidth: Algorithmic and combinatorial properties. Discrete Applied Mathematics, 2023, 341, pp.40-54. ⟨10.1016/j.dam.2023.07.023⟩. ⟨hal-04702071⟩
20 Consultations
26 Téléchargements

Altmetric

Partager

More