Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields

Résumé

At Asiacrypt 2022, Ducas, Postlethwaite, Pulles, and van Woerden introduced the Lattice Isomorphism Problem for module lattices in a number field K (module-LIP). In this article, we describe an algorithm solving module-LIP for modules of rank 2 in K 2 , when K is a totally real number field. Our algorithm exploits the connection between this problem, relative norm equations and the decomposition of algebraic integers as sums of two squares. For a large class of modules (including O 2 K ), and a large class of totally real number fields (including the maximal real subfield of cyclotomic fields) it runs in classical polynomial time in the degree of the field and the residue at 1 of the Dedekind zeta function of the field (under reasonable number theoretic assumptions). We provide a proof-of-concept code running over the maximal real subfield of some cyclotomic fields. As a side contribution, we also provide some algorithmic and theoretical tools for the future study of the module-LIP problem.
Fichier principal
Vignette du fichier
EC_paper_for_HAL.pdf (780.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04701342 , version 1 (18-09-2024)

Licence

Identifiants

Citer

Guilhem Mureau, Alice Pellet-Mary, Georgii Pliatsok, Alexandre Wallet. Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields. Eurocrypt 2024 - 43rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, May 2024, Zurich, Switzerland. pp.226-255, ⟨10.1007/978-3-031-58754-2_9⟩. ⟨hal-04701342⟩
59 Consultations
20 Téléchargements

Altmetric

Partager

More