Active Learning of Switched Nonlinear Dynamical Systems - Archive ouverte HAL
Conference Papers Year : 2024

Active Learning of Switched Nonlinear Dynamical Systems

Abstract

Most hybrid system identification methods rely on passive learning techniques, limiting the accuracy of the learned model to the data at hand. We present an active learning approach to identify state-dependent switched nonlinear dynamical systems with polynomial ODEs. Counterexample trajectories indicating a divergence between the system under learning and a learned hypothesis model are provided by an approximate equivalence query. Segmentation is applied on the true trajectories of the counterexamples before treating each segment. We provide a way to incrementally update the learned continuous dynamics to accommodate each segment if needed, without any assumption on the number of modes, before updating the mode regions. Our method uses multivariate polynomial regression for finding the continuous dynamics and multinomial logistic regression for the mode regions. We illustrate our approach and its effectiveness on multiple examples, including a parametric one with 20 modes.

Fichier principal
Vignette du fichier
CDC_2024_HAL.pdf (3 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04701115 , version 1 (18-09-2024)

Licence

Copyright

Identifiers

  • HAL Id : hal-04701115 , version 1

Cite

Hadi Dayekh, Nicolas Basset, Thao Dang. Active Learning of Switched Nonlinear Dynamical Systems. 2024 Conference on Decision and Control (CDC 2024), Dec 2024, Milan, Italy. ⟨hal-04701115⟩
26 View
23 Download

Share

More