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Active Learning of Switched Nonlinear Dynamical Systems

Hadi Dayekh1, Nicolas Basset1, and Thao Dang1

Abstract— Most hybrid system identification methods rely
on passive learning techniques, limiting the accuracy of the
learned model to the data at hand. We present an active learn-
ing approach to identify state-dependent switched nonlinear
dynamical systems with polynomial ODEs. Counterexample
trajectories indicating a divergence between the system under
learning and a learned hypothesis model are provided by an
approximate equivalence query. Segmentation is applied on the
true trajectories of the counterexamples before treating each
segment. We provide a way to incrementally update the learned
continuous dynamics to accommodate each segment if needed,
without any assumption on the number of modes, before updat-
ing the mode regions. Our method uses multivariate polynomial
regression for finding the continuous dynamics and multinomial
logistic regression for the mode regions. We illustrate our
approach and its effectiveness on multiple examples, including
a parametric one with 20 modes.

I. INTRODUCTION

Hybrid system identification is mostly done in passive
learning ways. These passive learning techniques consider
given data at once to infer a model, and they are appropriate
when a lot of data is available; however unnecessary data can
be overused in the identification algorithm, which could lead
to complexity issues. On the other hand, even when available
data is abundant, the data might still be insufficient to derive
a good model of the system under learning. This problem
of quality of data can be remedied by active learning which
is more adaptive to the need of the identification algorithm,
since it allows correcting the learned model by acquiring new
data, guided by instances of mismatch between the learned
model and the system under learning. Consequently, with
less but more informative data, active learning can provide
a more accurate model with less computational complexity.

Passive learning of hybrid systems is closely related to
hybrid systems identification, initially investigated in control
theory. Significant results were achieved for Piecewise affine
AutoRegressive eXogenous (PWARX) or Switched affine
AutoRegressive eXogenous (SARX) models (see [1, 2] for
surveys and references therein). PWARX can be seen as a
particular class of linear hybrid automata where switching
dynamics are deterministic. A major challenge of this iden-
tification problem includes the inference of the dynamics
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of submodels, as well as the partition of the state and
input spaces. The existing major approaches to address this
are mainly based on algebraic formulation, clustering, and
optimization. The algebraic approach [3, 4] specifies the
conditions for each data point to belong to one submodel by
a homogeneous polynomial equation, and then the switching
dynamics can be deduced. The clustering approach uses
features to assign submodels to data points [5]. This can
be done iteratively in order to minimize the number of sub-
models while satisfying a desired matching error bound [6].
This optimization-based approach can be extended to sys-
tems with nonlinear dynamics by expressing the dynamics
of submodels in kernel expansion form and solving the
associated relaxed optimization problem using kernel support
vector regression. A dynamic programming formulation is
used in [7] to solve the problem of segmentation of an
ARX trajectory with a minimum number of mode changes.
In [8] for switched linear systems non-smooth programming
is exploited in an algorithm that is linear in the size of
data, rather than exponential as in a direct mixed-integer
linear programming approach [9]. For linear complementar-
ity systems, a new efficient optimization procedure using
violation-based loss leads to a significant efficiency im-
provement [10]. Besides, machine learning techniques are
used, such as in [11] which employs symbolic regression to
infer a symbolic discrete dynamical model with continuous
mappings. In [12], a Bayesian approach is used to identify
PWARX models.

Recent work addresses hybrid models with more general
switching dynamics (guards, invariants, and resets) and with
continuous dynamics in continuous time, such as [13, 14,
15] for affine hybrid automata, [16] for switched nonlinear
systems and [17, 18] for nonlinear hybrid automata.

While passive learning techniques for the identification of
hybrid models have become more and more well-established,
active learning is still less investigated. Active learning has
been intensively studied in the context of automata learning
since [19] and recently applied for timed automata learning
[20, 21, 22, 23, 24]. In [25], an active identification problem
is defined as how to generate the input stimuli to a linear
dynamical system in order to accelerate its parameter esti-
mation. Concerning hybrid systems, the work [26] has some
active learning flavor where model synthesis is considered to
expand the current model so as to capture new experimental
data. In [13], an inferred linear hybrid automaton can be
refined by modifying the input stimuli. In [27] the active
learning feature is more emphasized since automata learning
techniques are applied to learn a discretized hybrid system,
and then model-based testing is used to generate data suffi-



cient for creating a neural network behavioral model. Note
however that in this work the active learning process is done
over a discretized state space of the real system, while in our
approach it is done over the hybrid state space to directly
discover a hybrid model. Our previous work [28] proposes
a framework for active learning of mode partition (that is,
state-space partition for submodels) with the assumption that
the continuous modes are already correctly identified in a
previous step. In this work, we do not need this assumption
and propose an algorithm for learning both continuous dy-
namics and mode partition in an active manner. This new
algorithm also allows us to demonstrate the advantage of
active learning in terms of data utilization.

The paper is organized as follows: section II provides the
problem statement as well as introduces the necessary tech-
niques required for our algorithm, namely segmentation and
multivariate polynomial regression. Subsequently, section III
goes over the main steps of our active learning approach
and explains our equivalence query approximation. That
being done, section IV and section V detail our algorithm
in updating the continuous dynamics of a given hypothesis
to treat counterexamples, as well as how we find the mode
regions, with section IV being the main contribution of this
paper. We illustrate our approach on several examples in
section VI. Finally, we provide a conclusion and talk about
future work and perspectives in section VII.

II. PRELIMINARIES

In this section, we provide the reader with a formal
definition of the problem we aim to solve, as well as certain
concepts and techniques necessary to our algorithm.

A. Problem Statement

The problem we tackle is identifying switched nonlinear
dynamical systems (SNDS) whose dynamics are governed by
n continuous differential equations, as follows:

ẋ = fj(x) if x ∈ Xj , j = 1, . . . , n

where x ∈ X1 ∪ X2 ∪ . . . ∪ Xn = X ⊆ RD and Xi ∩
Xj = ∅, i ̸= j. Furthermore, each fj(x) is polynomial in
the components of x with a known maximum degree, and
each Xj , called mode region, is defined by a conjunction of
polynomial inequalities, also with a known maximum degree.

We assume we have access to the system under learning
(SUL) as a black box, that is, given an initial condition x0,
a time step ts, and a time range T , we can execute the SUL
to generate a trajectory of the system under such conditions.

B. Segmentation and Estimating Derivatives

In our algorithm, the first step in treating any trajectory
generated by the system under learning will be segmentation.
Segmentation is a process aiming at detecting the change
points that occur in a trajectory indicating that the system
passes from one mode to another.

To perform segmentation, we use a similar method to [16],
which compares estimated forward and backward derivatives
at every point of the trajectory. In the event where the

relative difference of the forward and backward derivatives
is greater than a certain threshold, we deduce that there is a
change point in the neighborhood of that point. The relative
difference between two vectors x and y, coined in [16] and
used in [17, 28] is a normalized difference defined as:

rd(x,y) =
||x− y||
||x||+ ||y||

(1)

In the next treatment, points in a small neighborhood of
the change point which are used to estimate the forward and
backward derivatives are then dropped. This is performed
due to the uncertainty of where the change point really is,
and in order to ensure that we are left with segments such
that each is assumed to follow one mode.

A segment is represented by an index s. We define σ :
X ⇀ N to be the segment partial function, mapping points
in the state space X to the segment to which they belong. At
each point of the learning algorithm, the matrix of training
data is the domain of the partial function σ, denoted by
dom(σ), where each row represents a training data point.
Given a segment s, we represent by σ−1(s) the matrix of all
points that belong to segment s.

Now that the segmentation is done, the next step is to
estimate the derivatives of points in each segment. When
doing segmentation, as mentioned earlier, discarding points
too close to change points ensures that the derivative estima-
tion at points in one mode does not use points in a different
mode that have a different derivative function. Given points
belonging to a certain segment, we use the five-point-stencil
method [29], which uses forward and backward data along
the trajectory, to estimate the derivatives.

We denote by der(X) the matrix of derivatives of each
data point x in a matrix X .

C. Identifying Dynamics of a Single Mode

Consider a matrix of data points X with its corresponding
estimated derivatives der(X). In the event where all data
points in X belong to a certain mode j, we use multivariate
polynomial regression to estimate a function f̂ that governs
the dynamics of this mode.

This approach consists of extracting polynomial features
of each data point in X and then training a linear regression
model on the transformed data. Given a vector x ∈ X of
dimension D, as well as a polynomial degree γ, one could

extract Q =

((
D + γ

γ

)
− 1

)
monomials from x of degree

less than or equal to γ, excluding 1. We denote by Ψ(x)
the vector of polynomial features extracted from x and by
Ψ(X) the matrix of extracted features of all row vectors x
in X , the matrix of all data points. As an example,

Ψ((x1, x2)) = (x1
2, x2

2, x1x2, x1, x2)

is the vector of all monomials up to degree 2 of the vector
(x1, x2). For affine systems, Ψ(X) = X and Q = D.

Now, the dth component d of f̂(x) can be written as a
scalar product of the polynomial features Ψ(x) with a vector
ω(d) of Q coefficients, in addition to a bias term β(d). That



is, f̂ (d) = Ψ(x)T ·ω(d) +β(d). This reduces the problem of
finding the function f̂ to fitting D linear regression models
on each component of the vector function f̂, each with Q
coefficients and a bias term.

III. OVERVIEW OF THE APPROACH

A. Active Learning and Equivalence Queries

In active learning terminology, given a hypothesis H of
the learned system, an equivalence query [19] is a check
posed to an oracle to determine whether this hypothesis is
equivalent to the system under learning. In the case where
it is not, the oracle returns a counterexample illustrating this
non-equivalence. The principle idea of active learning is to
use such counterexamples to ameliorate the hypothesis until
the equivalence query returns no counterexamples.

In our setting, as we do not have an oracle to decide
whether a given hypothesis system is equivalent to the
SUL, we approximate an equivalence query by generating
trajectories from both systems and comparing them. Given
a hypothesis H, the system under learning S, some user-
defined number of trajectories ntrajs, a time step, a time
range, as well as certain bounds limiting the state space of
interest, we estimate an equivalence query by executing S
and H on ntrajs randomly chosen initial conditions within
the defined bounds, with the same time step and time range.
We then compare each pair of trajectories by computing
the average relative difference (RD) of each pair of points
(see Equation (1)). If this difference is less than a certain
threshold tol, we consider that the hypothesis trajectory is
matching with the one generated by S. Otherwise, this pair
is considered to be a counterexample, and hence one needs to
use the SUL trajectory to improve the learned model. We also
allow for a user-defined number ncexs of counterexamples
to be returned, allowing to stop the equivalence query check
once we have ncexs counterexamples. Once the equivalence
query returns no counterexamples on a certain hypothesis H,
this hypothesis is returned as the final learned model.

B. Our Active Learning Algorithm

We will go over the main steps of our active learning
algorithm before explaining the details of each step. In
order to create a first hypothesis, we need some initial
trajectories of the system under learning to begin with. These
trajectories are treated as if they are counterexamples, since
we begin with an empty learned model. Furthermore, our
algorithm treats them the exact same way as consequent
counterexamples returned by equivalence queries.

Now, in order to create a hypothesis, we need to find both
the continuous dynamics and the mode regions. Throughout
the learning algorithm, let F = {f̂1, . . . , f̂n} be the currently
learned continuous dynamics of the system, where n is
the current number of discovered modes, which could be
updated along the learning algorithm. Furthermore, let R =
{X̂1, . . . , X̂n} be the current mode regions.

Given trajectories of the counterexamples generated by the
system under learning S, as mentioned in subsection II-
B, the first step is to perform segmentation and estimate

the derivatives. This returns the segment partial function σ,
which implicitly contains all training data mapped to segment
identifiers.

In order to find the dynamics, we need to know which
mode the data we treat belongs to. Since we assume each
segment of every trajectory belongs to one mode (see subsec-
tion II-B), it suffices to find the mode of each segment. Let
λ : N ⇀ {1, . . . , n} be the mode partial function, mapping
each segment s ∈ range(σ) to a mode, if known. We denote
by (λ ◦ σ)−1

(j) the matrix of all points whose mode is found
to be j.

Our high-level main algorithm is summarized in Algo-
rithm 1. After segmenting the counterexample trajectories,
line 7 incrementally updates the current continuous dynamics
F to accommodate the counterexamples, as well as finds the
modes of each segment in these trajectories to update the
mode partial function λ. Having found the mode of each data
point, line 8 runs a logistic regression classifier to find new
mode regions. The details of these two steps are explained
in the next two sections.

Given the updated F and R, we create an executable hy-
pothesis from both, before posing a new equivalence query.
The algorithm terminates when the equivalence query returns
no counterexamples, in which case the current hypothesis H
is returned as the final result.

Algorithm 1 The main algorithm.

Input: S the system under learning.
Output: H the learned system.

1: procedure ACTIVELEARNING(S)
2: FirstTrajs← first executed trajectories of S.
3: CExs← FirstTrajs ▷ we start with an empty

hypothesis.
4: σ ← ∅; λ← ∅; F← ∅
5: repeat
6: σ ← SEGMENTANDDERIVATE(CExs, σ) ▷ seg-

ments CExs and adds it to σ
7: λ, F← UPDATECONTINUOUS(σ, λ, F)
8: R← FINDREGIONS(σ, λ)
9: H← (F, R) ▷ executable hypothesis

10: CExs← EQUIVALENCEQUERY(S, H)
11: until CExs = ∅
12: return H

IV. UPDATING CONTINUOUS DYNAMICS

After segmenting and estimating the derivatives at each
point in each segment of the counterexamples, we start
treating the segments one by one to incrementally learn the
continuous dynamics. Figure 1 summarizes the algorithm
of updating the continuous dynamics of the learned model
to fit a given set of counterexamples, and Algorithm 2
shows the detailed procedure. For each segment s of the
counterexample trajectories, we have to perform two checks.
The first check aims to identify whether we need to update
the continuous dynamics to fit this segment, or whether an



For each segment s of the counterexamples

Is there an already
learned mode j∗
that captures s?

λ(s) = j∗

Can we change
the dynamics
of an already
learned mode

j∗ to capture s?

Relearn f̂j∗ by
including the data of s

Learn a new mode
f̂n+1 on the data of s λ(s) = n+ 1
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yes

no

yes
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Fig. 1: A flowchart of our algorithm on updating the contin-
uous dynamics of the learned model, given a segmented set
of counterexample trajectories.

already learned mode can capture it. In case a modification
of the dynamics is needed, the second check aims to find out
whether we need to create a new mode to fit this segment, or
whether we can include it in the training data of an already
learned mode.

A. First check: Is there an already learned mode that can
capture this segment?

This check tells us whether the current learned contin-
uous dynamics are sufficiently good to capture segment s
and hence need no update. The idea is to calculate the
derivatives, predicted by the learned model, at points in
this segment for each mode by computing f̂j(σ

−1(s)) for
all j ∈ {1, . . . , n}. The next step is to compare each
of these predicted derivatives to the derivatives estimated
from the SUL trajectory data points, that is der(σ−1(s)).
If there is a mode j∗ that minimizes the average relative
difference between the predicted derivatives f̂j∗(σ

−1(s))
and the estimated derivatives der(σ−1(s)) under a certain
tolerance, we conclude that the mode of s is j∗, and hence
we do not need to update the continuous dynamics for s
and can pass on to the next segment. This first check is
summarized in lines 6-10 of Algorithm 2.

B. Second check: Can we modify an already learned mode
to capture this segment?

The second check aims to decide whether we could change
the dynamics of an already discovered mode to include
the points of s. We do this by trying to fit a regression
model that combines s with the data of a previously learned
mode. Concretely, for each mode j, we fit a multivariate
polynomial regression on the data of this mode ((λ ◦ σ)−1

j,
der((λ ◦ σ)−1

j) concatenated with the data of segment s,

Algorithm 2 Updating continuous dynamics.

Input: σ the partial function mapping data points to their
corresponding segments, λ the partial function map-
ping segments to their corresponding modes, F the
current continuous dynamics.

Output: updated λ containing modes of previously uniden-
tified segments, as well as the potentially updated
continuous dynamics F.

1: procedure UPDATECONTINUOUS(σ, λ, F)
2: {f̂1, . . . , f̂n} ← F ▷ this defines all f̂j as well as n
3: S ← range(σ) \ dom(λ) ▷ all segments with no

assigned modes
4: for all s ∈ S do
5: Xs ← σ−1(s); Ẋs ← der(σ−1(s))
6: RDs← ()
7: for all j ∈ {1, . . . , n} do
8: RDs← RDs⊕ RD(f̂j(Xs), Ẋs) ▷ ⊕ is a

concatenation operator
9: if minRDs ≤ tol then ▷ first check

10: λ(s)← argminRDs
11: else
12: RDs← ()
13: for all j ∈ {1, . . . , n} do
14: Xj ← (λ ◦ σ)−1

(j); Ẋj ← der(Xj)
15: Xaug ← Xj ⊕Xs; Ẋaug ← Ẋj ⊕ Ẋs

16: f̃j ← POLYREGRESSION(Xaug, Ẋaug)
17: Ẋpred ← f̃j(Xs); Ẋpred ← f̃j(Xj)
18: RDseg ← RD(Ẋpred, Ẋs)
19: RDX ← RD(Ẋpred, Ẋj)
20: RDs← max {RDseg, RDX}
21: if minRDs ≤ tol then ▷ second check
22: λ(s)← argminRDs
23: f̂λ(s) ← f̃λ(s)

24: else ▷ creating a new mode
25: f̂n+1 ← POLYREGRESSION(Xs, Ẋs)
26: λ(s)← n+ 1
27: n← n+ 1
28: return λ, {f̂1, . . . , f̂n}

in order to learn a new function f̃j . In a similar fashion to
the first check, we compare the predicted derivatives of data
in segment s to its estimated derivatives to see whether this
new function is a good fit for segment s. On top of that, we
check whether this new function still fits points belonging
to mode j. This last check is important since if we want
to update an already learned mode to capture s, we have to
make sure that this update still capture well the data already
assigned to this mode.

In the event where there is a mode j∗ that, when fitting a
new function that learns its data augmented with the data of
the segment, can capture both the data of segment s as well
as its original data up to a certain tolerance, we conclude
that segment s belongs to mode j∗, and that the dynamics
of this mode are updated to this new function f̃j . Lines 12-23
summarize this second check.



Finally, in case there is no existing mode j that can capture
the segment s, we conclude that this segment belongs to a
new mode. In this event, we increase the number of modes
by one and train a multivariate polynomial regression on the
data of s as a first guess for the dynamics of this new mode,
as shown in lines 24-27.

Before continuing, we remark that in [17, 18] mode group-
ing is done using dynamic time warping (DTW) distance
between trajectories. The DTW distance might be misleading
when trajectories from two different continuous dynamics
may be similar in shape in some subsets of the state space.
Our decision for mode updates is similar to the one used
in [16] for merging segments if they fit well in a regression
model; however, we do this merge incrementally, avoiding
retraining the regression when unnecessary.

V. FINDING MODE REGIONS

After finding the modes of each segment of the coun-
terexamples, as well as updating the continuous dynamics,
the next step in the algorithm is to find the mode regions R.
Since during the segmentation process, we drop points near
the decision boundaries of the mode regions, we observe that
augmenting the training data with finely spaced points gener-
ated between extremities of consecutive segments provides a
better result for the region finding described below. For these
additionally generated points, we re-apply segmentation to
get a more precise location of the change point.

Given this cumulative data, finding the regions can be
phrased as a multi-class classification problem for which we
use multinomial logistic regression. In order to deal with
polynomial boundaries, we extract polynomial features from
the training data similarly to what we did in subsection II-C.
Let Ψc(x) be the vector of monomials of components of x
up to a certain degree κ. To handle the linear case, we take
κ = 1 and hence Ψc(x) = x.

A. Two-mode Systems (n = 2)
For two modes, the logistic regression model provides

coefficients of the decision boundary that separates the two-
mode regions: B(x) = wTΨc(x) + b = 0 We then deduce
the two estimated mode regions:

X̂1 = {x | B(x) ≤ 0} , X̂2 = {x | B(x) ≥ 0}

B. Multi-mode Systems (n > 2)
In case of more than two modes, the multinomial logistic

regression model returns a set of linear coefficients (wj , bj)
per mode j. The mode of a new point x is deduced as
argmaxj wT

j Ψc(x) + bj .
The regions that construct the state space partition for the

modes are deduced as:

X̂j =

x |
∧
k ̸=j

(wj −wk)
TΨc(x) + (bj − bk) ≥ 0


Furthermore, the decision boundary between two modes j
and k is (wj −wk)

TΨc(x) + (bj − bk) = 0.
One could use linear programming techniques to get rid

of redundant or useless hyperplanes that may occur [6].

VI. RESULTS AND DISCUSSION

In this section, we illustrate our algorithm on three
different examples. Besides showing the effectiveness of
our learning approach, each example aims to highlight the
importance of a specific step in our training algorithm. We
run equivalence queries with 100 trajectories each, and fixed
time range and time step for each example. The tolerance
for the average relative difference between a SUL trajectory
and a learned system trajectory is set to be 0.1.

A. Polynomial Example

We illustrate each step of our algorithm, especially
focusing on the role of the second check (see subsection IV-
B), on a three-mode example with polynomial continuous
dynamics and linear boundaries, which is taken from [16].
For ease of comparison with the learned system, we name
the three modes of the system under learning A, B, and C.
The system is described by the following dynamics:

If −x2 ≥ 0 else if −x1 ≥ 0

(A)

{
ẋ1 = −7
ẋ2 = −x1

(B)

{
ẋ1 = 0.5x1

2 + 0.5x2

ẋ2 = −9x1 + 3

else

(C)

{
ẋ1 = 5

ẋ2 = −0.1x1 − 10

The regions corresponding to these three modes are thus:

XA = −x2 ≥ 0

XB = x2 > 0 ∧ −x1 ≥ 0

XC = x2 > 0 ∧ x1 > 0

In order to create a first hypothesis, we consider an initial
set of trajectories used for training. These trajectories are
shown in Figure 2a. As mentioned in Algorithm 1, the
first step in treating any trajectory is to do segmentation.
Figure 2b shows the same trajectories after segmentation.
The spaces that appear between consecutive segments of the
same trajectory are due to the fact that we discard points near
change points to ensure that points in one segment belong to
a single mode (see subsection II-B). We add numbers to the
figure in order to represent the identifiers of each segment.

The next step is to identify and update the learned con-
tinuous dynamics by treating each segment at a time. As we
start with an empty hypothesis, the data in segment 1 is used
to learn the dynamics of a first mode. Subsequent segments
are treated as explained in section IV.

After treating segments 1 through 3, the learning algorithm
finds three modes already, whose continuous dynamics, with
coefficients rounded to the nearest fourth decimal place, are:
Mode 1:{

ẋ1 = 0.03x1 + 0.492x2 − 0.002x1
2 + 0.04x1x2 − 0.021x2

2 + 0.6

ẋ2 = −8.968x1 − 0.008x2 − 0.536x1
2 + 0.042x1x2 − 0.023x2

2 + 3.641

Mode 2:{
ẋ1 = +5.0

ẋ2 = −0.02x1 + 0.04x2 − 0.001x1x2 − 10.203



(a) (b) (c)

Fig. 2: (a-b) Two initial training trajectories of the polynomial example, one in blue and one in orange, before and after
segmentation. The red dots represent the starting point of each trajectory, the red vertical bars represent the starting points
of segments, and the numbers are segment identifiers. (c) The final equivalence query of the polynomial example.

Mode 3:{
ẋ1 = −0.025x1 + 0.001x2 + 0.01x1

2 − 0.054x1x2 + 0.059x2
2 − 7.015

ẋ2 = −1.001x1 + 0.001x1
2 − 0.002x1x2 + 0.007x2

2 − 0.002

Proceeding, the learning algorithm keeps on treating sub-
sequent segments one at a time. Segment 4 fails the first
check, as none of the already learned equations captures it.
However, when trying to combine its data with that of an
already learned mode, it passes the second check, updating
the equations of mode 1. Similarly, segments 5 and 6 fail the
first check but pass the second one, with segment 5 updating
mode 2, and segment 6 updating mode 3. After treating the
first six segments, and thus the first trajectory, the learned
continuous dynamics are:

Mode 1: Mode 2:{
ẋ1 = 0.5x2 + 0.5x1

2

ẋ2 = −9.0x1 + 3.0

{
ẋ1 = +5.0

ẋ2 = −0.1x1 − 10.0

Mode 3:{
ẋ1 = −0.003x1 + 0.036x2 − 0.005x1x2 + 0.018x2

2 − 6.989

ẋ2 = −1.0x1

Moving to the second trajectory, segment 7 also fails the first
check, but passes the second concluding that the equations
of mode 3 must be updated to:{

ẋ1 = −7.001
ẋ2 = −1.0x1

Segments 8, 9, and 10 subsequently pass the first check, as
the now well-learned dynamics of modes 1, 2 and 3 capture
them respectively, and hence no update in the continuous
dynamics is needed.

After learning the continuous dynamics to fit to the initial
trajectories, we train a logistic regression classifier with
finely spaced points between segment extremities in order to
create a first hypothesis. We run equivalence query estima-
tions with ncexs set to 5, that is, if we find 5 counterexam-
ples, the equivalence query returns them as counterexamples
without fully testing 100 trajectories. For this example, three
equivalence queries return counterexamples. At each time,
the SUL trajectories of the counterexamples are treated to

see whether we need to update the continuous dynamics
first or the mode regions. In this run, all counterexample
trajectories passed the first check on each segment, and hence
the continuous dynamics of the first hypothesis were not
changed. The counterexample data was used, however, to
retrain a better logistic regression model.

The fourth equivalence query returned no counterexamples
(Figure 2c), and the average relative difference of compared
trajectories of this final equivalence query is 0.0113.

Denote by Bi,j(x) = 0 the found classifier boundary
between modes i and j, and Bj,i(x) = −Bi,j(x). We
normalize each boundary by dividing with the coefficient
with maximum absolute value, to get:

B1,2(x) = −x1 − 0.005x2 + 0.027

B1,3(x) = −0.017x1 + x2 − 0.060

B2,3(x) = 0.013x1 + x2 − 0.061

Consequently, the mode regions of the learned model are
derived as in subsection V-B and given by:

X̂1 = B1,2(x) ≥ 0 ∧ B1,3(x) ≥ 0

X̂2 = B2,1(x) ≥ 0 ∧ B2,3(x) ≥ 0

X̂3 = B3,1(x) ≥ 0 ∧ B3,2(x) ≥ 0

Modes 1, 2, and 3 of the learned model correspond
respectively to modes B, C, and A of the SUL.

B. Parametric Affine Example

In [28], we construct a system that is parametric in the
number of modes, designed to push the boundaries of the
learning algorithm by increasing the number of modes in
the system. The continuous dynamics of each mode in
this example are affine1, whereas the mode boundaries are
described by circles in the state space, all sharing the same
origin O = (0, 0).

1The continuous dynamics are chosen to be affine in order to easily vary
the qualitative behavior of the resulting systems.



(a) (b)

Fig. 3: A test equivalence query of a passively learned 10-
mode parametric example with 15 random trajectories vs.
the final equivalence query of an actively learned 10-mode
parametric example.

Given a point x, define d2(x) to be the squared distance
from the origin O. The mode regions are defined as follows:

X1 =

{
x | d2(x) ≥

(
n− 1

n

)2
}

Xj =

{
x |

(
n− j

n

)2

≤ d2(x) <

(
n− j + 1

n

)2

, 1<j≤n

}
Furthermore, the continuous dynamics in a mode j are:{

ẋ1 = −2.5x1 + αjx2

ẋ2 = −αjx1 − 2.5x2

where αj = 2j if j is odd, otherwise αj = −2j, leading to
alternating spiraling towards the center between clockwise
and anti-clockwise.

Our previous optimization based approach in [28] was able
to learn the parametric example with 5 modes, but no more.
Our current approach can correctly learn the example even
with 20 modes. We illustrate our algorithm on the parametric
example with 10 modes and 20 modes.

1) n = 10: In this section, we show the interest of active
learning in the choice of useful trajectories for learning.
The idea is to actively learn the parametric example with
10 modes, starting from one trajectory to create a first
hypothesis, and then stopping the equivalence queries at the
first counterexample. This allows us to count exactly how
many trajectories were needed in our approach to identify
the dynamics of the system.

We run our algorithm, and the ninth equivalence query
returns no counterexample (shown in Figure 3b), meaning
that we treated 9 trajectories in total to correctly learn the
model. The average relative difference between the trajecto-
ries of the SUL and those of the learned model in the final
equivalence query is 0.0019.

In order to show the interest of active learning, we run
our algorithm passively on 15 random trajectories to get a
hypothesis. This hypothesis is tested with an equivalence
query shown in Figure 3a, which returns 41 counterex-
amples out of 100 trajectories. We conclude that treating
carefully chosen trajectories (nine counterexamples in the
case of active learning) provides a model that outperforms

(a) For the first hypothesis. (b) For the final hypothesis.

Fig. 4: The training data used to create the first and last
hypotheses of the parametric example with 20 modes, along
with the found modes of each point.

a passively learned model with even higher number of
initial trajectories. We precise that with 15 trajectories, our
algorithm correctly identifies the continuous dynamics, as
they are affine. However, as we have a high number of
modes and nonlinear boundaries, passive learning with 15
trajectories failed at capturing the mode regions.

2) n = 20: We run our algorithm on the parametric
example with 20 modes. As we have a large number of
modes, we choose to process more counterexamples at a time
to avoid retraining the logistic regression model many times.
For this, we choose to return an equivalence query on the
first 10 counterexamples.

To create an initial hypothesis, we start with three initial
trajectories. These trajectories as well as their found modes
are shown in Figure 4a. In these trajectories, only 18 modes
out of 20 are present. However, as counterexamples from
equivalence queries are provided, more modes are discovered
and learned, showing the interest of our incremental approach
in identifying the continuous dynamics.

For this example, the seventh equivalence query returns no
counterexamples, after learning exactly 20 modes and their
mode regions. The average relative difference of the final
equivalence query is 0.0166. Figure 4b shows the cumulative
data (initial trajectories and all subsequent counterexamples)
used to learn the model.

VII. CONCLUSION AND FUTURE WORK

We present an active learning approach to identifying
switched nonlinear dynamical systems with polynomial dy-
namics. Our approach assumes access to the system under
learning as an executable black box, given initial conditions.
Our algorithm uses segmentation to detect change points in
the trajectories, then it is based on multivariate polynomial
regression for fitting the continuous dynamics and logistic
regression for the mode regions. We make no assumptions
on the number of modes in the system under learning. While
our method can be used in a passive setting, we leverage
it to the scope of active learning since our continuous
dynamics learning is incremental by design, meaning that
it can accommodate new data without changing the entire
found dynamics whenever possible. By construction, and
given assumptions about the accuracy of the multivariate
regression fit, we ensure that the average relative distance



between the estimated and predicted derivatives of points in
each mode is bounded by a certain tolerance.

We are cognizant that our methodology is not without
certain limitations. While our approach works well on many
experiments with different characteristics (which are not
presented in this paper), we acknowledge that the choice of
tolerance for the first and second checks in our algorithm is
an important one. On one hand, since there are bounds to the
accuracy of multivariate polynomial regression and derivative
estimations, choosing a very small tolerance could lead to
an overestimation of the number of modes. On the other
hand, choosing a very large tolerance could lead to segments
belonging to modes with different but similar dynamics to
be classified together. A more exhaustive study on the choice
of this hyperparameter is needed.

Currently, we retrain the logistic regression classifier from
scratch after each equivalence query. We plan to design
an incremental classifier that would not need to relearn
regions with already well-classified data. To the best of our
knowledge, while incremental classifiers exist, they do not
give a clear definition of the found mode regions in terms of
polytopes in the polynomial space. We think that having a
clear definition of the regions is crucial to the explainability
of the learned model as well as certain verifications that could
be used on it.

In addition to the aforementioned visions, our future work
includes extending the learning algorithm to more general
forms of hybrid systems, such as hybrid automata with resets
and jumps, as well as allowing for input variables.
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