Validating neurophysiological predictors of BCI performance on a large open source dataset
Validation de marqueurs neurophysiologique des performances en BCI sur une large base de donnée open source
Résumé
Brain-computer interfaces (BCI) are systems that process brain activity to decode specific commands from it such as motor imagery patterns generated when users imagine movements. Despite the growing interest in BCI, they present significant challenges, notably in decoding distinct neural patterns, due to considerable variability across and within users. The literature showed that various predictors were correlated with subject’s BCI performance. Among these indicators, neurophysiological predictors appeared to be the most effective, although studies generally involved small samples and results were not always replicated, thus questioning their reliability. In our study, we used a large dataset with 85 subjects to analyse the relationship between different predictors identified in the literature and BCI performance. Our findings reveal that only four of the six predictors tested could be replicated on this dataset. These results underscore the necessity of validating literature findings to ensure the reliability and applicability of such predictors.
Fichier principal
Graz__2024___Validating_neurophhysiological_predictors-9.pdf (638.29 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|