Enhancing JAAD with Knowledge Graphs for Improved Pedestrian Crossing Predictions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Enhancing JAAD with Knowledge Graphs for Improved Pedestrian Crossing Predictions

Gowrishankar Ganesh
Madalina Croitoru

Résumé

In this paper we place ourselves in the broad context of autonomous driving and, more precisely, in the context of road crossing decisions by pedestrians. Machine learning models built by the existing work need as training data datasets constructed by semi-automatic annotation of video images. JAAD (Joint Attention in Autonomous Driving) is a popular behavior annotated dataset in this regard. Our contribution is to provide a knowledge graph based proposal of additional features that are important but missing in JAAD dataset in the context of road crossing decisions by pedestrians.
Fichier principal
Vignette du fichier
first_version_concepts_2024.pdf (573.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04695528 , version 1 (12-09-2024)

Identifiants

Citer

Sandra Victor, Gowrishankar Ganesh, Madalina Croitoru. Enhancing JAAD with Knowledge Graphs for Improved Pedestrian Crossing Predictions. CONCEPTS 2024 - 1st International Joint Conference on Conceptual Knowledge Structures, Sep 2024, Cadiz, Spain. pp.319-326, ⟨10.1007/978-3-031-67868-4_21⟩. ⟨hal-04695528⟩
33 Consultations
26 Téléchargements

Altmetric

Partager

More