Analysis of Socially Unacceptable Discourse with Zero-shot Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Analysis of Socially Unacceptable Discourse with Zero-shot Learning

Résumé

Socially Unacceptable Discourse (SUD) analysis is crucial for maintaining online positive environments. We investigate the effectiveness of Entailment-based zero-shot text classification (unsupervised method) for SUD detection and characterization by leveraging pre-trained transformer models and prompting techniques. The results demonstrate good generalization capabilities of these models to unseen data and highlight the promising nature of this approach for generating labeled datasets for the analysis and characterization of extremist narratives. The findings of this research contribute to the development of robust tools for studying SUD and promoting responsible communication online.

Fichier principal
Vignette du fichier
Analysis_of_Socially_Unacceptable_Discourse_with_Zero_shot_Learning (4).pdf (211.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04689478 , version 1 (05-09-2024)
hal-04689478 , version 2 (06-09-2024)
hal-04689478 , version 3 (25-10-2024)

Licence

Identifiants

Citer

Rayane Ghilene, Dimitra Niaouri, Michele Linardi, Julien Longhi. Analysis of Socially Unacceptable Discourse with Zero-shot Learning. International Conference on CMC and Social Media Corpora for the Humanities, University Côte d’Azur, France, 2024, Sep 2024, Nice (FRANCE), France. ⟨hal-04689478v3⟩
127 Consultations
40 Téléchargements

Altmetric

Partager

More