On the monotonicity of the Fisher information for the Boltzmann equation
Résumé
We prove that the Fisher information is monotone decreasing in time along solutions of the space-homogeneous Boltzmann equation for a large class of collision kernels covering all classical interactions derived from systems of particles. For general collision kernels, a sufficient condition for the monotonicity of the Fisher information along the flow is related to the best constant for an integro-differential inequality for functions on the sphere, which belongs in the family of the Log-Sobolev inequalities. As a consequence, we establish the existence of global smooth solutions to the space-homogeneous Boltzmann equation in the main situation of interest where this was not known, namely the regime of very soft potentials. This is opening the path to the completion of both the classical program of qualitative study of space-homogeneous Boltzmann equation, initiated by Carleman, and the program of using the Fisher information in the study of the Boltzmann equation, initiated by McKean. From the proofs and discussion emerges a strengthened picture of the links between kinetic theory, information theory and log-Sobolev inequalities.