Modélisation de la bathymétrie par Pléiades Neo en baie de Saint-Malo: transfert radiatif et réseaux de neurones
Résumé
Malgré l’intérêt croissant pour la cartographie des fonds marins, seul un quart d’entre eux a pu être levé fidèlement à une résolution de l’ordre du km (30 arc-secondes). Ceci s’explique par les lourds coûts engendrés par les campagnes par bateau (sonar) et/ou par avion (lidar). Ainsi, la bathymétrie dérivée de satellite connaît un essor considérable depuis deux décennies. En fer de lance, l’imagerie multispectrale à très haute résolution spatiale de Pléiades Neo dispose de 6 bandes (4 visibles, 1 red edge, et 1 infrarouge) pourvues d’une résolution spatiale de 1,2 m, surclassant ainsi l’imagerie multispectrale de Pléiades-1 dotée de 4 bandes (3 visibles et 1 infrarouge) à 2 m. En s’appuyant sur un jeu de données Pléiades Neo 4 acquis au-dessus des eaux modérément turbides de la baie de Saint-Malo, ce travail a permis de quantifier les contributions des bandes deep blue et red edge à la prédiction de la bathymétrie lidar en regard de la nature de la modélisation, et de l’architecture du réseau neuronal. Premièrement, la modélisation semi-analytique (transfert radiatif) basée sur les transformées de ratio, testées individuellement et linéairement: le remplacement de la bande bleu par la bande deep blue a diminué la régression linéaire standard (bleu-vert-rouge-infrarouge, R2=0,36) de 11,1%, mais le remplacement de la bande rouge par red edge, a produit le même score. Deuxièmement, la modélisation semi-analytique basée sur la transformée de ratio Pléiades-1 versus la combinaison des 15 transformées Pléiades Neo : augmentations respectives de 52,8% de la régression linéaire (R2Pléiades-1=0,36, et R2Pléiades Neo=0,55), et de 36,2% de la régression non-linéaire par réseau de neurones à deux couches cachées à trois neurones (R2Pléiades-1=0,58, et R2Pléiades Neo=0,79). Finalement, la modélisation empirique basée sur la bonification spectrale de la simulation de Pléiades-1 par deep blue et red edge a généré un gain maximal de 6% pour la régression linéaire (R2Pléiades-1=0,50, et R2Pléiades Neo=0,53) et de 1,4% pour la régression non-linéaire par réseau de neurones à deux couches cachées à trois neurones (R2Pléiades-1=0,73, et R2Pléiades Neo=0,74).
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |