Exploring electrohydrodynamic flows inside leaky dielectric drops: a laser velocimetry approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Exploring electrohydrodynamic flows inside leaky dielectric drops: a laser velocimetry approach

Résumé

A novel experimental methodology based on laser velocimetry for the investigation of electrohydrodynamic (EHD) flows inside a neutrally buoyant leaky dielectric drop of 2.25 mm of radius is proposed. Utilizing fluorescent particles, 2D and 3D Lagrangian Particle Tracking (LPT) measurements of the EHD flows inside an initially spherical drop under a constant electric field are reported. Two leaky dielectric fluids, namely Silicone and Castor oils, were used as either the drop or the medium phases, depending on the case investigated, thus covering oblate and prolate drops both with small and larger deformations. 2D measurements of the trajectories and velocities of the tracer particles in a Lagrangian referential enabled a direct comparison with the leaky dielectric model (LDM), a well-stablished theory covering drops with smaller deformations, showing a good agreement with our measurements. The symmetry inside a drop with increased deformation is investigated from an analysis of the mean 3D velocity field, whose measurements converge to the two-dimensional analysis at the plane of symmetry of the drop, suggesting symmetrical flow structures inside the drop.
Fichier principal
Vignette du fichier
37_paper.pdf (3.98 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04684525 , version 1 (02-09-2024)

Identifiants

Citer

Joel Karp, Franck Lefebvre, G. Godard, Saïd Idlahcen, Bertrand Lecordier, et al.. Exploring electrohydrodynamic flows inside leaky dielectric drops: a laser velocimetry approach. 21st International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics 2024, Jul 2024, Lisbonne, Portugal. ⟨10.55037/lxlaser.21st.37⟩. ⟨hal-04684525⟩
31 Consultations
14 Téléchargements

Altmetric

Partager

More