Risk-adverse optimization by conditional value-at-risk and stochastic approximation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Risk-adverse optimization by conditional value-at-risk and stochastic approximation

Résumé

Engineering design is often faced with uncertainties, making it difficult to determine an optimal design. In an unconstrained context, this amounts to choose the desired trade-off between risk and performance. In this paper, an optimization problem with an adaptive risk level is stated using the Conditional Value-at-Risk (CVaR). Under mild conditions on the objective function and taking advantage of the noise, CVaR allows to smooth the problem. Then, a specific algorithm based on a stochastic approximation scheme is developed to solve the problem. This algorithm has two appealing properties. First, it does not use any estimation of quantile to compute the minimum of the CVaR of the noised objective function. Second, it uses only two function evaluations per iteration regardless of the problem dimension. A proof of convergence to a minimum of CVaR of the objective function is established. This proof is based on martingale theory and does not require any information about the differentiability or continuity of the function. Finally, test problems from the literature are combined in a benchmark set to compare our algorithm to a risk-neutral and a worst-case optimization algorithms. These tests prove the ability of the algorithm to be efficient in both cases, especially in large dimension.
Fichier non déposé

Dates et versions

hal-04684427 , version 1 (02-09-2024)

Identifiants

  • HAL Id : hal-04684427 , version 1

Citer

Jean Bigeon, Romain Couderc, Charles Audet, Michael Kokkolaras. Risk-adverse optimization by conditional value-at-risk and stochastic approximation. JOPT2022, May 2022, Montreal, Canada. ⟨hal-04684427⟩
9 Consultations
0 Téléchargements

Partager

More