A discrete-time Matsumoto-Yor theorem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

A discrete-time Matsumoto-Yor theorem

Résumé

We study a random walk on the subgroup of lower triangular matrices of SL_2 , with i.i.d. increments. We prove that the process of the lower corner of the random walk satisfies a Rogers-Pitman criterion to be a Markov chain if and only if the increments are distributed according to a Generalized Inverse Gaussian (GIG) law on their diagonals. For this, we prove a new characterization of these laws. We prove a discrete-time version of the Dufresne identity. We show how to recover the Matsumoto-Yor theorem by taking the continuous limit of the random walk.
Fichier principal
Vignette du fichier
DiscreteMYTheorem-31-08.pdf (519.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04683351 , version 1 (02-09-2024)
hal-04683351 , version 2 (09-11-2024)

Identifiants

Citer

Charlie Herent. A discrete-time Matsumoto-Yor theorem. 2024. ⟨hal-04683351v1⟩
42 Consultations
22 Téléchargements

Altmetric

Partager

More