Solidification of Polyurethane Model Foams via Catalyst Drainage from a Secondary Foam - Archive ouverte HAL
Article Dans Une Revue Macromolecular Rapid Communications Année : 2024

Solidification of Polyurethane Model Foams via Catalyst Drainage from a Secondary Foam

Manon Jouanlanne
Antoine Egelé
Wiebke Drenckhan
Jean Farago

Résumé

Due to their unique mechanical and thermal properties, polyurethane foams are widely used in multiple fields of applications, including cushioning, thermal insulation or biomedical engineering. However, the way polyurethane foams are usually manufactured ‐ via chemical foaming ‐ produces samples where blowing and gelling occur at the same time, resulting in a morphology control achieved by trial and error processes. Here, a novel strategy is introduced to build model homogeneous polyurethane foams of controlled density with millimetric bubbles from liquid templates. By producing a polyurethane foam via physical bubbling without a catalyst and gently depositing a secondary foam containing catalyst on the top of this first foam, it is possible to take advantage of drainage mechanisms to trigger the solidification of the bottom foam. The characterization of the samples performed by X‐ray microtomography allows to study quantitatively the structure of the final solid foam, at the global and at the local scale. Using the tomographic 3D images of the foam architectures, the superimposed foam technique introduced in this article is shown to be promising to produce foams with a good homogeneity along the vertical direction, with a density controlled by varying the concentration of catalyst in the secondary foam.
Fichier principal
Vignette du fichier
2024_Macromolecular Rapid Communications_PU_foams.pdf (2.33 Mo) Télécharger le fichier
Origine Publication financée par une institution
Licence

Dates et versions

hal-04682582 , version 1 (30-08-2024)

Licence

Identifiants

Citer

Manon Jouanlanne, Antoine Egelé, Wiebke Drenckhan, Jean Farago, Aurélie Hourlier‐fargette. Solidification of Polyurethane Model Foams via Catalyst Drainage from a Secondary Foam. Macromolecular Rapid Communications, In press, ⟨10.1002/marc.202400254⟩. ⟨hal-04682582⟩
120 Consultations
24 Téléchargements

Altmetric

Partager

More