Marker effect p-values for single-step GWAS with the algorithm for proven and young in large genotyped populations - Archive ouverte HAL
Article Dans Une Revue Genetics Selection Evolution Année : 2024

Marker effect p-values for single-step GWAS with the algorithm for proven and young in large genotyped populations

Natália Galoro Leite
Connectez-vous pour contacter l'auteur
Matias Bermann
  • Fonction : Auteur
Shogo Tsuruta
  • Fonction : Auteur
Ignacy Misztal
  • Fonction : Auteur
Daniela Lourenco
  • Fonction : Auteur

Résumé

AbstractBackgroundSingle-nucleotide polymorphism (SNP) effects can be backsolved from ssGBLUP genomic estimated breeding values (GEBV) and used for genome-wide association studies (ssGWAS). However, obtaining p-values for those SNP effects relies on the inversion of dense matrices, which poses computational limitations in large genotyped populations. In this study, we present a method to approximate SNP p-values for ssGWAS with many genotyped animals. This method relies on the combination of a sparse approximation of the inverse of the genomic relationship matrix (GAPY-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{G}}_{\mathbf{A}\mathbf{P}\mathbf{Y}}^\mathbf{-1}$$\end{document}) built with the algorithm for proven and young (APY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{APY}$$\end{document}) and an approximation of the prediction error variance of SNP effects which does not require the inversion of the left-hand side (LHS) of the mixed model equations. To test the proposed p-value computing method, we used a reduced genotyped population of 50K genotyped animals and compared the approximated SNP p-values with benchmark p-values obtained with the direct inverse of LHS built with an exact genomic relationship matrix (G-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{G}}^\mathbf{-1})$$\end{document}. Then, we applied the proposed approximation method to obtain SNP p-values for a larger genotyped population composed of 450K genotyped animals.ResultsThe same genomic regions on chromosomes 7 and 20 were identified across all p-value computing methods when using 50K genotyped animals. In terms of computational requirements, obtaining p-values with the proposed approximation reduced the wall-clock time by 38 times and the memory requirement by ten times compared to using the exact inversion of the LHS. When the approximation was applied to a population of 450K genotyped animals, two new significant regions on chromosomes 6 and 14 were uncovered, indicating an increase in GWAS detection power when including more genotypes in the analyses. The process of obtaining p-values with the approximation and 450K genotyped individuals took 24.5 wall-clock hours and 87.66GB of memory, which is expected to increase linearly with the addition of noncore genotyped individuals.ConclusionsWith the proposed method, obtaining p-values for SNP effects in ssGWAS is computationally feasible in large genotyped populations. The computational cost of obtaining p-values in ssGWAS may no longer be a limitation in extensive populations with many genotyped animals.
Fichier principal
Vignette du fichier
12711_2024_Article_925.pdf (2.01 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04677274 , version 1 (26-08-2024)

Identifiants

Citer

Natália Galoro Leite, Matias Bermann, Shogo Tsuruta, Ignacy Misztal, Daniela Lourenco. Marker effect p-values for single-step GWAS with the algorithm for proven and young in large genotyped populations. Genetics Selection Evolution, 2024, 56 (1), pp.59. ⟨10.1186/s12711-024-00925-3⟩. ⟨hal-04677274⟩
15 Consultations
5 Téléchargements

Altmetric

Partager

More