Delaunay property and proximity results of the L-algorithm for digital plane probing - Archive ouverte HAL
Article Dans Une Revue Theoretical Computer Science Année : 2024

Delaunay property and proximity results of the L-algorithm for digital plane probing

Jui-Ting Lu
Tristan Roussillon
David Coeurjolly

Résumé

When processing the geometry of digital surfaces (boundaries of voxel sets), linear local structures such as pieces of digital planes play an important role. To capture such geometrical features, plane- probing algorithms have demonstrated their strength: starting from an initial triangle, the digital structure is locally probed to expand the triangle approximating the plane parameters more and more precisely (converging to the exact parameters for infinite digital planes). Among the different plane-probing algorithms, the L-algorithm is a plane-probing algorithm variant which takes into account a generally larger neighborhood of points for its update process. We show in this paper that this algorithm has the advantage to guarantee the so-called Delaunay property of the set of probing points, which has interesting consequences: it provides a minimal basis of the plane and guarantees an as-local-as-possible computation.
Fichier principal
Vignette du fichier
lu-delaunay-24.pdf (1.38 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04671533 , version 1 (15-08-2024)

Licence

Identifiants

Citer

Jui-Ting Lu, Tristan Roussillon, Jacques-Olivier Lachaud, David Coeurjolly. Delaunay property and proximity results of the L-algorithm for digital plane probing. Theoretical Computer Science, 2024, 1011, ⟨10.1016/j.tcs.2024.114719⟩. ⟨hal-04671533⟩
60 Consultations
24 Téléchargements

Altmetric

Partager

More