Success Prediction in MOOCS based on a transfer learning approach - Archive ouverte HAL
Rapport Année : 2022

Success Prediction in MOOCS based on a transfer learning approach

J Wu
  • Fonction : Auteur
N Ma
  • Fonction : Auteur

Résumé

Massive Open Online Courses (MOOCs) typically present a high rate of non-completing learners. Studying the characteristics of pass and fail learners should help to provide assistance and identify root causes for dropouts. In this work, we propose to improve a success prediction task on a specific course with a solution based on a transfer learning approach. Our experiments are validated on two datasets with different trace properties.
Fichier principal
Vignette du fichier
2022___EDM_TransfertLearningForPrediction.pdf (130.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04671262 , version 1 (14-08-2024)

Licence

Domaine public

Identifiants

  • HAL Id : hal-04671262 , version 1

Citer

Antoine Pigeau, J Wu, N Ma. Success Prediction in MOOCS based on a transfer learning approach. LS2N, Université de Nantes. 2022. ⟨hal-04671262⟩
50 Consultations
14 Téléchargements

Partager

More