Computing modular polynomials by deformation - Archive ouverte HAL
Article Dans Une Revue Research in Number Theory Année : 2024

Computing modular polynomials by deformation

Résumé

We present an unconditional CRT algorithm to compute the modular polynomial $\Phi_\ell(X,Y)$ in quasi-linear time. The main ingredients of our algorithm are: the embedding of $\ell$-isogenies in smooth-degree isogenies in higher dimension, and the computation of m-th order deformations of isogenies. We provide a proof-of-concept implementation of a heuristic version of the algorithm demonstrating the practicality of our approach. Our algorithm can also be used to compute the reduction of $\Phi_\ell$ modulo $p$ in quasi-linear time (with respect to $\ell$) $\tilde{O}(\ell^2 ( \log p + \log \ell)^\mathfrak{O})$.
Fichier principal
Vignette du fichier
main.pdf (462.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04671239 , version 1 (14-08-2024)

Licence

Identifiants

Citer

Sabrina Kunzweiler, Damien Robert. Computing modular polynomials by deformation. Research in Number Theory, 2024, 11 (1), pp.10. ⟨10.1007/s40993-024-00596-5⟩. ⟨hal-04671239⟩
44 Consultations
12 Téléchargements

Altmetric

Partager

More