MobiCFNet: A Lightweight Model for Cattle Face Recognition in Nature - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

MobiCFNet: A Lightweight Model for Cattle Face Recognition in Nature

Résumé

In smart livestock, precision livestock systems require efficient and safe non-contact cattle identification methods in daily operation and management. In this paper, we focus on lightweight Convolutional Neural Network (CNN) based cattle face identification in natural background. Particularly, we first construct a fine-grained cattle recognition dataset with natural background. Then, we propose a lightweight CNN model MobiCFNet, containing a two-stage method that can realize one-shot cattle recognition. Finally, a series of experiments are conducted to validate the effectiveness of our proposed network .
Fichier sous embargo
Fichier sous embargo
0 0 10
Année Mois Jours
Avant la publication
mercredi 1 janvier 2025
Fichier sous embargo
mercredi 1 janvier 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04666448 , version 1 (01-08-2024)

Licence

Identifiants

Citer

Laituan Qiao, Yaojun Geng, Yuxuan Zhang, Shuyin Zhang, Chao Xu. MobiCFNet: A Lightweight Model for Cattle Face Recognition in Nature. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.386-394, ⟨10.1007/978-3-031-14903-0_41⟩. ⟨hal-04666448⟩
14 Consultations
0 Téléchargements

Altmetric

Partager

More