Dual Siamese Channel Attention Networks for Visual Object Tracking - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Dual Siamese Channel Attention Networks for Visual Object Tracking

Wenxing Gao
  • Fonction : Auteur
  • PersonId : 1405977
Xiaolin Tian
  • Fonction : Auteur
  • PersonId : 1405924
Yifan Zhang
  • Fonction : Auteur
  • PersonId : 1405978
Nan Jia
  • Fonction : Auteur
  • PersonId : 1405926
Ting Yang
  • Fonction : Auteur
  • PersonId : 1405925
Licheng Jiao
  • Fonction : Auteur
  • PersonId : 1405918

Résumé

Siamese network based trackers have achieved remarkable performance on visual object tracking. The target position is determined by the similarity map produced via cross-correlation over features generated from template branch and search branch. The interaction between the template and search branches is essential for achieving high-performance object tracking task, which is neglected in previous works as features of the two branches are computed separately. In this paper, we propose Dual Siamese Channel Attentions Networks, referred as SiamDCA, which exploits the channel attentions to further improve tracking robustness. Firstly, a convolutional version of Squeeze and Excitation Networks (CSENet) is embedded in backbone to explicitly formulate interdependencies between channels to recalibrate channel-wise feature responses adaptively. Meanwhile, we propose a novel Global Channel Enhancement (GCE) module, which is capable of capturing attention weights of each channel in template branch, so as to normalize the channel characteristics in search branch. We experiment on benchmark OTB2015, VOT2016 and UAV123 where our algorithm demonstrates competitive performance versus other state-of-the-art trackers.
Fichier sous embargo
Fichier sous embargo
0 0 2
Année Mois Jours
Avant la publication
mercredi 1 janvier 2025
Fichier sous embargo
mercredi 1 janvier 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04666446 , version 1 (01-08-2024)

Licence

Identifiants

Citer

Wenxing Gao, Xiaolin Tian, Yifan Zhang, Nan Jia, Ting Yang, et al.. Dual Siamese Channel Attention Networks for Visual Object Tracking. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.263-272, ⟨10.1007/978-3-031-14903-0_28⟩. ⟨hal-04666446⟩
18 Consultations
3 Téléchargements

Altmetric

Partager

More