Multi Recursive Residual Dense Attention GAN for Perceptual Image Super Resolution - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Multi Recursive Residual Dense Attention GAN for Perceptual Image Super Resolution

Résumé

Single image super-resolution (SISR) has achieved great progress based on convolutional neural networks (CNNs) such as generative adversarial network (GAN). However, most deep learning architectures cannot utilize the hierarchical features in original low-resolution images, which may result in the loss of image details. To recover visually high-quality high-resolution images, we propose a novel Multi-recursive residual dense Attention Generative Adversarial Network (MAGAN). Our MAGAN enjoys the ability to learn more texture details and overcome the weakness of conventional GAN-based models, which easily generate redundant information. In particular, we design a new multi-recursive residual dense network as a module in our generator to take advantage of the information from hierarchical features. We also introduce a multi-attention mechanism to our MAGAN to capture more informative features. Moreover, we present a new convolutional block in our discriminator by utilizing switchable normalization and spectral normalization to stabilize the training and accelerate convergence. Experimental results on benchmark datasets indicate that MAGAN yields finer texture details and does not produce redundant information in comparison with existing methods.
Fichier sous embargo
Fichier sous embargo
0 0 10
Année Mois Jours
Avant la publication
mercredi 1 janvier 2025
Fichier sous embargo
mercredi 1 janvier 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04666444 , version 1 (01-08-2024)

Licence

Identifiants

Citer

Linlin Yang, Hongying Liu, Yiming Li, Wenhao Zhou, Yuanyuan Liu, et al.. Multi Recursive Residual Dense Attention GAN for Perceptual Image Super Resolution. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.363-377, ⟨10.1007/978-3-031-14903-0_39⟩. ⟨hal-04666444⟩
19 Consultations
1 Téléchargements

Altmetric

Partager

More