Deep Complex Convolutional Neural Networks for Remote Sensing Image Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Deep Complex Convolutional Neural Networks for Remote Sensing Image Classification

Résumé

At present, the neural network is often based on the real field of operation, research shows that, compared with the real field, the complex has incomparable advantages in the field of image processing, such as the complex represents more information, such as the phase information and modulus value, which play a great role in some fields. To take full advantage of complex data, This paper mainly studies CNN network, and through complex value processing, and get Complex Convolutional Neural Networks(CCN), complete the construction of complex convolution neural network. In order to study complex neural network, we start from two aspects, one is convolution operation, the other is network construction. In this paper, we use ENet as the basic structure of the model, replace the convolutional structure, pooling structure, and BatchNorm structure with the complex form, use it in the Flevoland dataset, and get a good test results.
Fichier sous embargo
Fichier sous embargo
0 0 10
Année Mois Jours
Avant la publication
mercredi 1 janvier 2025
Fichier sous embargo
mercredi 1 janvier 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04666442 , version 1 (01-08-2024)

Licence

Identifiants

Citer

Lingling Li, Yukai Sun, Fuhai Ma, Jingjing Ma, Licheng Jiao, et al.. Deep Complex Convolutional Neural Networks for Remote Sensing Image Classification. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.252-259, ⟨10.1007/978-3-031-14903-0_27⟩. ⟨hal-04666442⟩
19 Consultations
1 Téléchargements

Altmetric

Partager

More