Deep Siamese Network with Contextual Transformer for Remote Sensing Images Change Detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Deep Siamese Network with Contextual Transformer for Remote Sensing Images Change Detection

Résumé

Change detection is one of the most important and challenging tasks in remote sensing images processing. Deep learning has gradually become one of the most popular technologies in remote sensing image change detection. Recently, the success of self-attention mechanism in computer vision provides new ideas for change detection task. In this paper, a new method based on deep siamese network with self-attention mechanism for bi-temporal remote sensing image change detection is proposed. In order to obtain more powerful image features, the contextual transformer module is added into the feature extractor. In order to make full use of the low-level and the high-level features from the feature extractor, the multi-scale fusion strategies are applied to integrate features. Furthermore, the obtained image features are input into the transformer to get more refined pixel-level features. The proposed model is testified on CCD dataset, and the results demonstrate its effectiveness.
Fichier sous embargo
Fichier sous embargo
0 0 2
Année Mois Jours
Avant la publication
mercredi 1 janvier 2025
Fichier sous embargo
mercredi 1 janvier 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04666436 , version 1 (01-08-2024)

Licence

Identifiants

Citer

Mengxuan Zhang, Zhao Liu, Jie Feng, Licheng Jiao, Long Liu. Deep Siamese Network with Contextual Transformer for Remote Sensing Images Change Detection. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.193-200, ⟨10.1007/978-3-031-14903-0_21⟩. ⟨hal-04666436⟩
19 Consultations
2 Téléchargements

Altmetric

Partager

More