Mouse-Brain Topology Improved Evolutionary Neural Network for Efficient Reinforcement Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Mouse-Brain Topology Improved Evolutionary Neural Network for Efficient Reinforcement Learning

Résumé

The brain structures are key indicators to represent the complexity of many cognitive functions, e.g., visual pathways and memory circuits. Inspired by the topology of the mouse brain provided by the Allen Brain Institute, whereby 213 brain regions are linked as a mesoscale connectome, we propose a mouse-brain topology improved evolutionary neural network (MT-ENN). The MT-ENN model incorporates parts of biologically plausible brain structures after hierarchical clustering, and then is tuned by the evolutionary learning algorithm. Two benchmark Open-AI Mujoco tasks were used to test the performance of the proposed algorithm, and the experimental results showed that the proposed MT-ENN was not only sparser (containing only 61% of all connections), but also performed better than other algorithms, including the ENN using a random network, standard long-short-term memory (LSTM), and multi-layer perception (MLP). We think the biologically plausible structures might contribute more to the further development of artificial neural networks.
Fichier sous embargo
Fichier sous embargo
0 0 10
Année Mois Jours
Avant la publication
mercredi 1 janvier 2025
Fichier sous embargo
mercredi 1 janvier 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04666431 , version 1 (01-08-2024)

Licence

Identifiants

Citer

Xuan Han, Kebin Jia, Tielin Zhang. Mouse-Brain Topology Improved Evolutionary Neural Network for Efficient Reinforcement Learning. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.3-10, ⟨10.1007/978-3-031-14903-0_1⟩. ⟨hal-04666431⟩
16 Consultations
1 Téléchargements

Altmetric

Partager

More