Background Augmentation with Transformer-Based Autoencoder for Hyperspectral Anomaly Detection
Résumé
Aiming at handling the problem caused by the lack of prior spectral knowledge of anomalous pixels for hyperspectral anomaly detection (HAD). In this paper, we propose a background augmentation with transformer-based autoencoder for hyperspectral remote sensing image anomaly detection. The representative background pixels are selected based on sparse representation for obtaining typical background pixels as training samples of the transformer-based autoencoder. The selected typical background pixels can be used for training the transformer-based autoencoder to realize background pixel reconstruction. Thereafter, the pseudo background samples can be reconstructed from the transformer-based autoencoder, which is used to subtract the original image to obtain the residual image. Finally, Reed-Xiaoli (RX) is used to detect the anomalous pixels from residual image. Experiments results demonstrate that the proposed transformer-based autoencoder which can present competitive hyperspectral image anomaly detection results than other traditional algorithms.